document.write( "Question 553905: A hyperbola has a vertices at(0,±4) and a foci at (0,±9). Write its equation. \n" ); document.write( "
Algebra.Com's Answer #361111 by lwsshak3(11628)![]() ![]() ![]() You can put this solution on YOUR website! A hyperbola has a vertices at(0,±4) and a foci at (0,±9). Write its equation. \n" ); document.write( "** \n" ); document.write( "Given equation is that of a hyperbola with vertical transverse axis of the standard form: \n" ); document.write( "(y-k)^2/a^2-(x-h)^2/b^2=1, (h,k) being the (x,y) coordinates of the center. \n" ); document.write( "For given equation: \n" ); document.write( "center: (0,0) \n" ); document.write( "length of vertices=8=2a \n" ); document.write( "a=4 \n" ); document.write( "a^2=16 \n" ); document.write( ".. \n" ); document.write( "foci: c=9 \n" ); document.write( "c^2=81 \n" ); document.write( ".. \n" ); document.write( "c^2=a^2+b^2 \n" ); document.write( "b^2=c^2-a^2=81-16=65 \n" ); document.write( ".. \n" ); document.write( "Equation of given hyperbola: \n" ); document.write( "y^2/16-x^2/65=1 \n" ); document.write( " |