document.write( "Question 553905: A hyperbola has a vertices at(0,±4) and a foci at (0,±9). Write its equation. \n" ); document.write( "
Algebra.Com's Answer #361111 by lwsshak3(11628)\"\" \"About 
You can put this solution on YOUR website!
A hyperbola has a vertices at(0,±4) and a foci at (0,±9). Write its equation.
\n" ); document.write( "**
\n" ); document.write( "Given equation is that of a hyperbola with vertical transverse axis of the standard form:
\n" ); document.write( "(y-k)^2/a^2-(x-h)^2/b^2=1, (h,k) being the (x,y) coordinates of the center.
\n" ); document.write( "For given equation:
\n" ); document.write( "center: (0,0)
\n" ); document.write( "length of vertices=8=2a
\n" ); document.write( "a=4
\n" ); document.write( "a^2=16
\n" ); document.write( "..
\n" ); document.write( "foci: c=9
\n" ); document.write( "c^2=81
\n" ); document.write( "..
\n" ); document.write( "c^2=a^2+b^2
\n" ); document.write( "b^2=c^2-a^2=81-16=65
\n" ); document.write( "..
\n" ); document.write( "Equation of given hyperbola:
\n" ); document.write( "y^2/16-x^2/65=1
\n" ); document.write( "
\n" );