document.write( "Question 552799: Graph the equation. Identify the vertices, co vertices, and foci of the ellipse.
\n" );
document.write( "{[(x^2)/16]+[(y^2)/4]}=1 \n" );
document.write( "
Algebra.Com's Answer #360575 by lwsshak3(11628)![]() ![]() ![]() You can put this solution on YOUR website! Graph the equation. Identify the vertices, co vertices, and foci of the ellipse. \n" ); document.write( "{[(x^2)/16]+[(y^2)/4]}=1 \n" ); document.write( "** \n" ); document.write( "(x^2)/16+(y^2)/4=1 \n" ); document.write( "This is an equation for an ellipse with horizontal major axis. Its standard form: \n" ); document.write( "y=(x-h)^2/a^2+(y-k)^2/b^2, a>b, with (h,k) being the (x,y) coordinates of the center. \n" ); document.write( "For given equation: \n" ); document.write( "Center: (0, 0) \n" ); document.write( "a^2=16 \n" ); document.write( "a=√16=4 \n" ); document.write( "b^2=4 \n" ); document.write( "b=2 \n" ); document.write( "c^2=a^2-b^2=16-4=12 \n" ); document.write( "c=(x^2)/16]+[(y^2)/4]}=√12≈3.46 \n" ); document.write( ".. \n" ); document.write( "vertices: (0±a,0)=(0±4,0)=(-4,0) and (4,0) \n" ); document.write( "Co-vertices: (0,0±b)=(0,0±2)=(0,-2) and (0,2) \n" ); document.write( "Foci:(0±c,0)=(0±√12,0)=(-3.46,0) and (3.46,0) \n" ); document.write( "see graph below: \n" ); document.write( ".. \n" ); document.write( "y=±(4-x^2/4)^.5 \n" ); document.write( " |