document.write( "Question 551360: Factor Completely\r
\n" ); document.write( "\n" ); document.write( "3a^2+5ab-12b^2
\n" ); document.write( "

Algebra.Com's Answer #359677 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"3a%5E2%2B5ab-12b%5E2\", we can see that the first coefficient is \"3\", the second coefficient is \"5\", and the last coefficient is \"-12\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"3\" by the last coefficient \"-12\" to get \"%283%29%28-12%29=-36\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"-36\" (the previous product) and add to the second coefficient \"5\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"-36\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"-36\":\r
\n" ); document.write( "\n" ); document.write( "1,2,3,4,6,9,12,18,36\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-4,-6,-9,-12,-18,-36\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"-36\".\r
\n" ); document.write( "\n" ); document.write( "1*(-36) = -36
\n" ); document.write( "2*(-18) = -36
\n" ); document.write( "3*(-12) = -36
\n" ); document.write( "4*(-9) = -36
\n" ); document.write( "6*(-6) = -36
\n" ); document.write( "(-1)*(36) = -36
\n" ); document.write( "(-2)*(18) = -36
\n" ); document.write( "(-3)*(12) = -36
\n" ); document.write( "(-4)*(9) = -36
\n" ); document.write( "(-6)*(6) = -36\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"5\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1-361+(-36)=-35
2-182+(-18)=-16
3-123+(-12)=-9
4-94+(-9)=-5
6-66+(-6)=0
-136-1+36=35
-218-2+18=16
-312-3+12=9
-49-4+9=5
-66-6+6=0
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"-4\" and \"9\" add to \"5\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"-4\" and \"9\" both multiply to \"-36\" and add to \"5\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"5ab\" with \"-4ab%2B9ab\". Remember, \"-4\" and \"9\" add to \"5\". So this shows us that \"-4ab%2B9ab=5ab\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"3a%5E2%2Bhighlight%28-4ab%2B9ab%29-12b%5E2\" Replace the second term \"5ab\" with \"-4ab%2B9ab\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%283a%5E2-4ab%29%2B%289ab-12b%5E2%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"a%283a-4b%29%2B%289ab-12b%5E2%29\" Factor out the GCF \"a\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"a%283a-4b%29%2B3b%283a-4b%29\" Factor out \"3b\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28a%2B3b%29%283a-4b%29\" Combine like terms. Or factor out the common term \"3a-4b\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"3a%5E2%2B5ab-12b%5E2\" factors to \"%28a%2B3b%29%283a-4b%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"3a%5E2%2B5ab-12b%5E2=%28a%2B3b%29%283a-4b%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"%28a%2B3b%29%283a-4b%29\" to get \"3a%5E2%2B5ab-12b%5E2\" or by graphing the original expression and the answer (the two graphs should be identical).
\n" ); document.write( "
\n" ); document.write( "
\n" );