document.write( "Question 551194: factor 22nsquare+n-5\r
\n" ); document.write( "\n" ); document.write( "also factor 14zsquare-49z+35\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "And factor 5xsquare+17x+6
\n" ); document.write( "

Algebra.Com's Answer #359520 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
I'll do the first one to get you started\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"22n%5E2%2Bn-5\", we can see that the first coefficient is \"22\", the second coefficient is \"1\", and the last term is \"-5\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"22\" by the last term \"-5\" to get \"%2822%29%28-5%29=-110\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"-110\" (the previous product) and add to the second coefficient \"1\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"-110\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"-110\":\r
\n" ); document.write( "\n" ); document.write( "1,2,5,10,11,22,55,110\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-5,-10,-11,-22,-55,-110\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"-110\".\r
\n" ); document.write( "\n" ); document.write( "1*(-110) = -110
\n" ); document.write( "2*(-55) = -110
\n" ); document.write( "5*(-22) = -110
\n" ); document.write( "10*(-11) = -110
\n" ); document.write( "(-1)*(110) = -110
\n" ); document.write( "(-2)*(55) = -110
\n" ); document.write( "(-5)*(22) = -110
\n" ); document.write( "(-10)*(11) = -110\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"1\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1-1101+(-110)=-109
2-552+(-55)=-53
5-225+(-22)=-17
10-1110+(-11)=-1
-1110-1+110=109
-255-2+55=53
-522-5+22=17
-1011-10+11=1
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"-10\" and \"11\" add to \"1\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"-10\" and \"11\" both multiply to \"-110\" and add to \"1\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"1n\" with \"-10n%2B11n\". Remember, \"-10\" and \"11\" add to \"1\". So this shows us that \"-10n%2B11n=1n\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"22n%5E2%2Bhighlight%28-10n%2B11n%29-5\" Replace the second term \"1n\" with \"-10n%2B11n\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%2822n%5E2-10n%29%2B%2811n-5%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2n%2811n-5%29%2B%2811n-5%29\" Factor out the GCF \"2n\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2n%2811n-5%29%2B1%2811n-5%29\" Factor out \"1\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%282n%2B1%29%2811n-5%29\" Combine like terms. Or factor out the common term \"11n-5\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"22n%5E2%2Bn-5\" factors to \"%282n%2B1%29%2811n-5%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"22n%5E2%2Bn-5=%282n%2B1%29%2811n-5%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"%282n%2B1%29%2811n-5%29\" to get \"22n%5E2%2Bn-5\" or by graphing the original expression and the answer (the two graphs should be identical).
\n" ); document.write( "
\n" ); document.write( "
\n" );