Algebra.Com's Answer #359247 by Edwin McCravy(20055)  You can put this solution on YOUR website! write the equation of the parabola in vertex form: vertex (3,3) that goes through the point (-2,53). \n" );
document.write( " \n" );
document.write( "The standard form of a parabola is\r \n" );
document.write( "\n" );
document.write( "y = a(x - h)² + k where the vertex is the point (h,k)\r \n" );
document.write( "\n" );
document.write( "In this case (h,k) = (3,3), so the above becomes\r \n" );
document.write( "\n" );
document.write( "y = a(x - 3)² + 3\r \n" );
document.write( "\n" );
document.write( "Since is contains the point (x,y) = (-2,53)\r \n" );
document.write( "\n" );
document.write( "53 = a(-2 - 3)² + 3\r \n" );
document.write( "\n" );
document.write( "53 = a(-5)² + 3\r \n" );
document.write( "\n" );
document.write( "53 = a(25) + 3\r \n" );
document.write( "\n" );
document.write( "53 = 25a + 3\r \n" );
document.write( "\n" );
document.write( "50 = 25a\r \n" );
document.write( "\n" );
document.write( "2 = a\r \n" );
document.write( "\n" );
document.write( "Substitute 2 for a in\r \n" );
document.write( "\n" );
document.write( "y = a(x - 3)² + 3\r \n" );
document.write( "\n" );
document.write( "y = 2(x - 3)² + 3 \n" );
document.write( " \n" );
document.write( "That's the equation you were looking for.\r \n" );
document.write( "\n" );
document.write( "The graph is\r \n" );
document.write( "\n" );
document.write( " \n" );
document.write( " \n" );
document.write( " |