document.write( "Question 547991: Help Me Factor 5p2-p-18 \n" ); document.write( "
Algebra.Com's Answer #356675 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"5p%5E2-p-18\", we can see that the first coefficient is \"5\", the second coefficient is \"-1\", and the last term is \"-18\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"5\" by the last term \"-18\" to get \"%285%29%28-18%29=-90\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"-90\" (the previous product) and add to the second coefficient \"-1\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"-90\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"-90\":\r
\n" ); document.write( "\n" ); document.write( "1,2,3,5,6,9,10,15,18,30,45,90\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-5,-6,-9,-10,-15,-18,-30,-45,-90\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"-90\".\r
\n" ); document.write( "\n" ); document.write( "1*(-90) = -90
\n" ); document.write( "2*(-45) = -90
\n" ); document.write( "3*(-30) = -90
\n" ); document.write( "5*(-18) = -90
\n" ); document.write( "6*(-15) = -90
\n" ); document.write( "9*(-10) = -90
\n" ); document.write( "(-1)*(90) = -90
\n" ); document.write( "(-2)*(45) = -90
\n" ); document.write( "(-3)*(30) = -90
\n" ); document.write( "(-5)*(18) = -90
\n" ); document.write( "(-6)*(15) = -90
\n" ); document.write( "(-9)*(10) = -90\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"-1\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1-901+(-90)=-89
2-452+(-45)=-43
3-303+(-30)=-27
5-185+(-18)=-13
6-156+(-15)=-9
9-109+(-10)=-1
-190-1+90=89
-245-2+45=43
-330-3+30=27
-518-5+18=13
-615-6+15=9
-910-9+10=1
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"9\" and \"-10\" add to \"-1\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"9\" and \"-10\" both multiply to \"-90\" and add to \"-1\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"-1p\" with \"9p-10p\". Remember, \"9\" and \"-10\" add to \"-1\". So this shows us that \"9p-10p=-1p\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"5p%5E2%2Bhighlight%289p-10p%29-18\" Replace the second term \"-1p\" with \"9p-10p\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%285p%5E2%2B9p%29%2B%28-10p-18%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"p%285p%2B9%29%2B%28-10p-18%29\" Factor out the GCF \"p\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"p%285p%2B9%29-2%285p%2B9%29\" Factor out \"2\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28p-2%29%285p%2B9%29\" Combine like terms. Or factor out the common term \"5p%2B9\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"5p%5E2-p-18\" factors to \"%28p-2%29%285p%2B9%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"5p%5E2-p-18=%28p-2%29%285p%2B9%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"%28p-2%29%285p%2B9%29\" to get \"5p%5E2-p-18\" or by graphing the original expression and the answer (the two graphs should be identical).
\n" ); document.write( "
\n" ); document.write( "
\n" );