document.write( "Question 539867: The length of the latus rectum for the ellipse (x^2/64) + (y^2/16) = 1 is equal to:
\n" ); document.write( "a)2
\n" ); document.write( "b)3
\n" ); document.write( "c)4
\n" ); document.write( "d)5
\n" ); document.write( "

Algebra.Com's Answer #353950 by lwsshak3(11628)\"\" \"About 
You can put this solution on YOUR website!
The length of the latus rectum for the ellipse (x^2/64) + (y^2/16) = 1 is equal to:
\n" ); document.write( "a)2
\n" ); document.write( "b)3
\n" ); document.write( "c)4
\n" ); document.write( "d)5
\n" ); document.write( "**
\n" ); document.write( "Standard form of equation for ellipse with horizontal major axis:
\n" ); document.write( "(x-h)^2/a^2+(y-k)^2/b^2=1,a>b, (h,k)=(x,y) coordinates of center
\n" ); document.write( "From given equation, b^2=16
\n" ); document.write( "a^2=64
\n" ); document.write( "a=8
\n" ); document.write( "Formula for length of the latus rectum for the ellipse: 2b^2/a
\n" ); document.write( "2b^2/2a=2*16/8=4
\n" ); document.write( "ans: c)4
\n" ); document.write( "
\n" );