document.write( "Question 536807: 1.) (K>K) > R
\n" ); document.write( "2.) (RvM) > N /N\r
\n" ); document.write( "\n" ); document.write( "I need to use either AIP or ACP (or both) and the eighteen rules of inference to derive the conclusion. If someone can please help.
\n" ); document.write( "

Algebra.Com's Answer #352583 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
Since we have the conclusion N, let's assume for the sake of argument that the opposite is true. In other words, let's assume that the conclusion is ~N. Our job is to show that a contradiction will arise, and if it does, then the opposite of ~N must be true (ie N is really the correct conclusion).\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r\n" );
document.write( "1.) (K > K) > R\r\n" );
document.write( "2.) (R v M) > N                     / N\r\n" );
document.write( "----------------\r\n" );
document.write( "	3.)  ~N                     AIP\r\n" );
document.write( "	4.)  ~(R v M)        2,3    Modus Tollens\r\n" );
document.write( "	5.)  ~R & ~M         4      De Morgan's Law\r\n" );
document.write( "	6.)  ~R              5      Simplification\r\n" );
document.write( "	7.)  ~(K > K)        1,6    Modus Tollens\r\n" );
document.write( "	8.)  ~(~K v K)       7      Material Implication\r\n" );
document.write( "	9.)  ~~K & ~K        8      De Morgan's Law\r\n" );
document.write( "	10.) K & ~K          9      Double Negation\r\n" );
document.write( "11.) N                       3-10   IP\r\n" );
document.write( "
\n" ); document.write( "
\n" );