document.write( "Question 530282: Find the integer k, k > 2, for, which log (k - 2)! + log(k - 1)! + 2 = 2 log k!. \n" ); document.write( "
Algebra.Com's Answer #350009 by richard1234(7193)\"\" \"About 
You can put this solution on YOUR website!
I presume that the factorial is inside the log, otherwise it would not easily be defined.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "We can write the original equation,\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( ", as\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( ", using logarithmic properties. \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( ", upon simplifying the factorial expression in the LHS. Assuming the log is in base 10,\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( ", in which k = 5 is the unique positive integer solution.
\n" ); document.write( "
\n" );