document.write( "Question 529847: 5. Find the maximum profit and the number of units that must be produced and sold in
\n" );
document.write( " order to yield the maximum profit. Assume that revenue, R(x), and cost, C(x), are in
\n" );
document.write( " thousands of dollars and x in thousands of units for
\n" );
document.write( " R(x) = 100x-x2
\n" );
document.write( " C(x) = 1/3 x^3-6x^2+89x+100
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #349775 by stanbon(75887)![]() ![]() ![]() You can put this solution on YOUR website! Find the maximum profit and the number of units that must be produced and sold in \n" ); document.write( "order to yield the maximum profit. Assume that revenue, R(x), and cost, C(x), are in \n" ); document.write( "thousands of dollars and x in thousands of units for \n" ); document.write( "R(x) = 100x-x2 \n" ); document.write( "C(x) = 1/3 x^3-6x^2+89x+100\r \n" ); document.write( "\n" ); document.write( "---------- \n" ); document.write( "Profit = Revenue - Cost \n" ); document.write( "--- \n" ); document.write( "P(x) = 100x-x^2-[(1/3)x^3-6x^2+89x+100] \n" ); document.write( "---- \n" ); document.write( "P(x) = (-1/3)x^3+5x^2+11x-100 \n" ); document.write( "--- \n" ); document.write( "P'(x) = -x^2+10x+11 \n" ); document.write( "--- \n" ); document.write( "P''(x) = -2x+10 \n" ); document.write( "---- \n" ); document.write( "Solve: -x^2+10x+11 = 0 \n" ); document.write( "x^2-10x-11 = 0 \n" ); document.write( "(x-11)(x+1) = 0 \n" ); document.write( "x = -1 or x = 11 \n" ); document.write( "--- \n" ); document.write( "P''(-1) = -2(-1)+10 = 12 (minimum at (-1,f(-1))) \n" ); document.write( "P''(11) = -2(11)+10 = -12 (maximum at (11,f(11)) \n" ); document.write( "--- \n" ); document.write( "Graph of P(x): \n" ); document.write( " \n" ); document.write( "================= \n" ); document.write( "Cheers, \n" ); document.write( "Stan H. \n" ); document.write( "=========== \n" ); document.write( " \n" ); document.write( " |