document.write( "Question 529799: The length of a rectangle exceeds the width by 2cm. If the diagonal is 10cm long, find the width of the rectangle. \n" ); document.write( "
Algebra.Com's Answer #349730 by swincher4391(1107)\"\" \"About 
You can put this solution on YOUR website!
Let l and w be the length and width respectively. Let d be the diagonal.\r
\n" ); document.write( "\n" ); document.write( "l = w+2\r
\n" ); document.write( "\n" ); document.write( "Then look at this diagram:\r
\n" ); document.write( "\n" ); document.write( "\"Photobucket\"\r
\n" ); document.write( "\n" ); document.write( "Notice we have a right triangle.\r
\n" ); document.write( "\n" ); document.write( "Then w^2 + (w+2)^2 = (10)^2\r
\n" ); document.write( "\n" ); document.write( "w^2 + w^2 + 4w + 4 = 100\r
\n" ); document.write( "\n" ); document.write( "2w^2 + 4w -96 = 0\r
\n" ); document.write( "\n" ); document.write( "2(w^2 + 2w - 48) = 0\r
\n" ); document.write( "\n" ); document.write( "2(w+8)(w-6) = 0\r
\n" ); document.write( "\n" ); document.write( "w = -8 and w = 6\r
\n" ); document.write( "\n" ); document.write( "Can't have a negative width, so w=6.\r
\n" ); document.write( "\n" ); document.write( "Thus our width is 6cm.
\n" ); document.write( "
\n" );