document.write( "Question 524900: The first three terms of an arithmetic progression are tan x, cos x, and sec x, respectively. If the k th term is cot x, find k. \n" ); document.write( "
Algebra.Com's Answer #348896 by Aswathy(23)\"\" \"About 
You can put this solution on YOUR website!
Note that AP means arithmetic progression.
\n" ); document.write( "Here, a1=tanx, a2=cosx and a3=secx
\n" ); document.write( "Common difference (d)of the given AP=a2-a1=cosx-tanx=cosx-(sinx/cosx)
\n" ); document.write( " =(cos^2x-sinx)/(cosx)..............(1)
\n" ); document.write( "Similarly,a3-a2=secx-cosx=(1/cosx)-cosx=(1-cos^2x)/cosx=(sin^2x)/cosx........(2)
\n" ); document.write( "Since the given terms are in AP,then the difference between the terms will be equal.
\n" ); document.write( "Therefore,a2-a1=a3-a2
\n" ); document.write( "then,cosx-tanx=secx-cosx
\n" ); document.write( "cosx+cosx=secx+tanx
\n" ); document.write( "2cosx=(1/cosx)+(sinx/cosx)
\n" ); document.write( "2cosx=(1+sinx)/cosx
\n" ); document.write( "2cos^2x=1+sinx.................(3)
\n" ); document.write( "Similarly,now from (1) and(2),
\n" ); document.write( "(cos^2x-sinx)/(cosx)=(sin^2x)/(cosx)
\n" ); document.write( "then,cos^2x-sinx=sin^2x {cancelling out cosx on both sides of the equation}
\n" ); document.write( "cos^2x=sinx+sin^2x
\n" ); document.write( "cos^2x=sinx(1+sinx)
\n" ); document.write( "cos^2x=sinx(2cos^2x) [from (3)]
\n" ); document.write( "cos^2x/2cos^2x=sinx
\n" ); document.write( "1/2=sinx {cancelling out cos^2x on both sides of the equation}
\n" ); document.write( "Therefore,x=30 as sinx=1/2
\n" ); document.write( "Let ak(k is subscript of a) be the kth term which is cotx here.
\n" ); document.write( "In the given AP,d=a2-a1=cos30-tan30=1/2sqrt(3)
\n" ); document.write( "Now,kth term ,ak=a1+(k-1)d
\n" ); document.write( "then,cos30=tan30+(k-1)2/2sqrt(3)\r
\n" ); document.write( "\n" ); document.write( "By solving this equation we get,k=5 which is our required answer.
\n" ); document.write( "So,k=5\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );