document.write( "Question 526717: if cos theta = -2/3 and 450 degrees < theta < 540degrees, find\r
\n" );
document.write( "\n" );
document.write( "a. the exact value of cos (1/2) theta
\n" );
document.write( "b. the exact value of tan 2theta \n" );
document.write( "
Algebra.Com's Answer #348681 by lwsshak3(11628)![]() ![]() ![]() You can put this solution on YOUR website! if cos theta = -2/3 and 450 degrees < theta < 540degrees, find \n" ); document.write( "a. the exact value of cos (1/2) theta \n" ); document.write( "b. the exact value of tan 2theta \n" ); document.write( "** \n" ); document.write( "using x in place of theta \n" ); document.write( "450º < x < 540º places the angle in quadrant II where cos<0 \n" ); document.write( "cos x=-2/3 means you are working with a right triangle whose adjacent side is= -2, and the hypotenuse=3. By the Pythagorean Theorem, the opposite side=√5. \n" ); document.write( "Angle x=arccos(-2/3)+360º=131.81º+360=491.81º \n" ); document.write( "Reference angle=540-491.81=48.19º \n" ); document.write( ".. \n" ); document.write( "a. cos x/2=±√[(1+cosx)/2]=-√[(1-2/3)/2]=-√(1/6)=-1/√6=-√6/6=-0.408.. \n" ); document.write( "check: cos(x/2)=cos(491.81/2)=cos(245.91º)=-0.408.. \n" ); document.write( ".. \n" ); document.write( "b. tan2x=(2 tanx)/(1-tan^2x) \n" ); document.write( "tan x=√5/-2 (opposite side/adjacent side) \n" ); document.write( "tan^2x=5/4 \n" ); document.write( "tan2x==2*(√5/-2)/(1-5/4)=-√5/(-1/4)=4√5=8.94.. \n" ); document.write( "tan 2x=tan(2*491.81)=tan(983.62º)=8.94.. \n" ); document.write( ".. \n" ); document.write( "Ans: \n" ); document.write( "a. exact value of cos (1/2) theta=-√6/6 \n" ); document.write( "b. exact value of tan 2theta =4√5 \n" ); document.write( " |