document.write( "Question 520002: 1)consider the polynomial
\n" );
document.write( "p(x)=x^3+ax^2+bx-12
\n" );
document.write( "given that (x+3)and (x-4)are factors of p(x), factorise p(x)completely.
\n" );
document.write( "2)the polynomial p(x)=2x^3-ax^2=bx+48 has (x-4) as a repeated factor,find the values of a and b. \n" );
document.write( "
Algebra.Com's Answer #345919 by Edwin McCravy(20054)![]() ![]() You can put this solution on YOUR website! 1)consider the polynomial \n" ); document.write( "p(x)=x^3+ax^2+bx-12 \n" ); document.write( "given that (x+3)and (x-4)are factors of p(x), factorise p(x)completely.\r \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( "Assume that the other factor of p(x) is x-r. Then\r\n" ); document.write( "\r\n" ); document.write( "p(x) = x³ + ax² + bx - 12 = (x + 3)(x - 4)(x - r) = (x² - x - 12)(x - r) =\r\n" ); document.write( "\r\n" ); document.write( "x³ - rx - x² + rx - 12x + 12r\r\n" ); document.write( "\r\n" ); document.write( "x³ + ax² + bx - 12 = x³ - rx² - x² + rx - 12x + 12r\r\n" ); document.write( "\r\n" ); document.write( "x³ + ax² + bx - 12 = x³ - (r + 1)x² + (r - 12)x + 12r\r\n" ); document.write( "\r\n" ); document.write( "Equate coefficients of like powers of x:\r\n" ); document.write( "\r\n" ); document.write( "a = -(r + 1)\r\n" ); document.write( "b = (r - 12)\r\n" ); document.write( "-12 = 12r which tells us that r = -1\r\n" ); document.write( "\r\n" ); document.write( "a = -(r + 1) = -(-1+1) = 0\r\n" ); document.write( "b = (r - 12) = -1 - 12 = -13\r\n" ); document.write( "\r\n" ); document.write( "p(x) = x³ + ax² + bx - 12 = (x + 3)(x - 4)(x - r) = \r\n" ); document.write( "\r\n" ); document.write( "(x + 3)(x - 4)[x -(-1)] =\r\n" ); document.write( "\r\n" ); document.write( "(x + 3)(x - 4)(x + 1)\r\n" ); document.write( "\r\n" ); document.write( " \n" ); document.write( "2)the polynomial p(x)=2x^3-ax^2+bx+48 has (x+4) as a repeated factor , find the values of a and b.\r \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( "Assume that the factors are (x - 4), (x - 4), (x - r), and 2.\r\n" ); document.write( "\r\n" ); document.write( "Then\r\n" ); document.write( "\r\n" ); document.write( "p(x) = 2x³ + ax² + bx - 12 = (x - 4)(x - 4)2(x - r)\r\n" ); document.write( "\r\n" ); document.write( "Notice that I put in the factor 2 because the first coefficient is 2\r\n" ); document.write( "and that 2 is necessary to make the terms in x³ the same.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "p(x) = (x - 4)(x - 4)2(x - r)\r\n" ); document.write( "\r\n" ); document.write( "Multiply that all the way out and get\r\n" ); document.write( "\r\n" ); document.write( "p(x) = 2x³ + ax² + bx - 12 \r\n" ); document.write( "= 2x³ - 2rx² - 16x² + 16rx + 32x - 32r =\r\n" ); document.write( "2x³ + (-2r-16)x² + (16r+32)x - 32r \r\n" ); document.write( "\r\n" ); document.write( "Now equate the coeficcients of\r\n" ); document.write( "\r\n" ); document.write( "2x³ + ax² + bx - 12\r\n" ); document.write( "\r\n" ); document.write( "and\r\n" ); document.write( "\r\n" ); document.write( "2x³ + (-2r-16)x² + (16r+32)x - 32r\r\n" ); document.write( "\r\n" ); document.write( "Equating the coefficients of x²:\r\n" ); document.write( "\r\n" ); document.write( "a = -2r - 16\r\n" ); document.write( "\r\n" ); document.write( "Equating the coefficients of x\r\n" ); document.write( "\r\n" ); document.write( "b = 16r + 32\r\n" ); document.write( "\r\n" ); document.write( "Equating the constant term:\r\n" ); document.write( "\r\n" ); document.write( "-32r = -12\r\n" ); document.write( "\r\n" ); document.write( "Solving for r:\r\n" ); document.write( "\r\n" ); document.write( "r =\n" ); document.write( " |