document.write( "Question 517738: If cos x = -2/3 and x terminates in quadrant 2 find the exact value of cos 2x, sin 2x, and tan 2x... \n" ); document.write( "
Algebra.Com's Answer #344975 by lwsshak3(11628)![]() ![]() ![]() You can put this solution on YOUR website! If cos x = -2/3 and x terminates in quadrant 2 find the exact value of cos 2x, sin 2x, and tan 2x \n" ); document.write( "** \n" ); document.write( "Cos x terminates in quadrant II where sin>0, cos<0 and tan<0 \n" ); document.write( "You are working with a right triangle where the adjacent side=-2, hypotenuse=3, and opposite side \n" ); document.write( "=√[(3^2)-(-2)^2]=√(9-4)=√5 \n" ); document.write( "cos x=-2/3 (given) \n" ); document.write( "sin x=√5/3 \n" ); document.write( "tan x=sin/cos=(√5/3)/(-2/3)=-√5/2 \n" ); document.write( ".. \n" ); document.write( "cos 2x=cos^2x-sin^2x (identity) \n" ); document.write( "cos 2x=(-2/3)^2-(√5/3)^2=4/9-5/9=-1/9 \n" ); document.write( ".. \n" ); document.write( "sin 2x=2sinx cosx (identity) \n" ); document.write( "sin 2x=2*√5/3*2/3=4√5/9 \n" ); document.write( ".. \n" ); document.write( "tan 2x=2tanx/(1-tan^2x) (identity) \n" ); document.write( "tan 2x=(2*-√5/2)/(1-(-√5/2)^2))=-√5/(1-5/4)=√5(-1/4)=-√5/4 \n" ); document.write( " |