document.write( "Question 515854: What are the steps that you would take to factor out 2x^2+x+3 \n" ); document.write( "
Algebra.Com's Answer #344178 by drumwrrv(7)![]() ![]() ![]() You can put this solution on YOUR website! 2x^(2)+x+3=0\r \n" ); document.write( "\n" ); document.write( "Use the quadratic formula to find the solutions. In this case, the values are a=2, b=1, and c=3. \n" ); document.write( "x=(-b\~(b^(2)-4ac))/(2a) where ax^(2)+bx+c=0\r \n" ); document.write( "\n" ); document.write( "Substitute in the values of a=2, b=1, and c=3. \n" ); document.write( "x=(-1\~((1)^(2)-4(2)(3)))/(2(2))\r \n" ); document.write( "\n" ); document.write( "Simplify the section inside the radical. \n" ); document.write( "x=(-1\i~(23))/(2(2))\r \n" ); document.write( "\n" ); document.write( "Simplify the denominator of the quadratic formula. \n" ); document.write( "x=(-1\i~(23))/(4)\r \n" ); document.write( "\n" ); document.write( "First, solve the + portion of \. \n" ); document.write( "x=(-1+i~(23))/(4)\r \n" ); document.write( "\n" ); document.write( "Next, solve the - portion of \. \n" ); document.write( "x=(-1-i~(23))/(4)\r \n" ); document.write( "\n" ); document.write( "The final answer is the combination of both solutions. \n" ); document.write( "x=(-1+i~(23))/(4),(-1-i~(23))/(4) \n" ); document.write( " |