document.write( "Question 514613: How many ways can the digits 1, 2, 3, 4, and 5 be arranged in a row of 3 to form an odd counting number if repetition is permitted and if 3 cannot be second and 1 cannot be third? \n" ); document.write( "
Algebra.Com's Answer #343500 by Edwin McCravy(20056)![]() ![]() You can put this solution on YOUR website! How many ways can the digits 1, 2, 3, 4, and 5 be arranged in a row of 3 to form an odd counting number if repetition is permitted and if 3 cannot be second and 1 cannot be third?\r \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( "There are no restrictions on the first digit, so we can\r\n" ); document.write( "choose it any of 5 ways.\r\n" ); document.write( "\r\n" ); document.write( "For each of the 5 ways to choose the first digit there are\r\n" ); document.write( "4 ways to choose the 2nd digit, either 1,2,4, or 5. We are\r\n" ); document.write( "told it can't be 3. That's 5*4 or 20 ways to choose the first \r\n" ); document.write( "two digits.\r\n" ); document.write( "\r\n" ); document.write( "An odd number must end in an odd digit, so the third digit is \r\n" ); document.write( "either 1,3, or 5. But we are told 1 cannot be third, so it can \r\n" ); document.write( "only be 3 or 5. So for each of the 20 ways to choose the first \r\n" ); document.write( "and second digits, there are 2 ways to choose the last digit.\r\n" ); document.write( "\r\n" ); document.write( "That makes 20*2 or 40 ways total.\r\n" ); document.write( "\r\n" ); document.write( "Here they all are:\r\n" ); document.write( "\r\n" ); document.write( "1. 113\r\n" ); document.write( "2. 115\r\n" ); document.write( "3. 123\r\n" ); document.write( "4. 125\r\n" ); document.write( "5. 143\r\n" ); document.write( "6. 145\r\n" ); document.write( "7. 153\r\n" ); document.write( "8. 155\r\n" ); document.write( "9. 213\r\n" ); document.write( "10. 215\r\n" ); document.write( "11. 223\r\n" ); document.write( "12. 225\r\n" ); document.write( "13. 243\r\n" ); document.write( "14. 245\r\n" ); document.write( "15. 253\r\n" ); document.write( "16. 255\r\n" ); document.write( "17. 313\r\n" ); document.write( "18. 315\r\n" ); document.write( "19. 323\r\n" ); document.write( "20. 325\r\n" ); document.write( "21. 343\r\n" ); document.write( "22. 345\r\n" ); document.write( "23. 353\r\n" ); document.write( "24. 355\r\n" ); document.write( "25. 413\r\n" ); document.write( "26. 415\r\n" ); document.write( "27. 423\r\n" ); document.write( "28. 425\r\n" ); document.write( "29. 443\r\n" ); document.write( "30. 445\r\n" ); document.write( "31. 453\r\n" ); document.write( "32. 455\r\n" ); document.write( "33. 513\r\n" ); document.write( "34. 515\r\n" ); document.write( "35. 523\r\n" ); document.write( "36. 525\r\n" ); document.write( "37. 543\r\n" ); document.write( "38. 545\r\n" ); document.write( "39. 553\r\n" ); document.write( "40. 555\r\n" ); document.write( "\r\n" ); document.write( "Edwin\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |