document.write( "Question 513398: How many liters each of a 15% antifreeze solution and a 30% antifreeze solution must be mixed to make 6 liters of a 20% antifreeze solution? \n" ); document.write( "
Algebra.Com's Answer #343041 by Maths68(1474)![]() ![]() You can put this solution on YOUR website! Solution A \n" ); document.write( "Amount = x \n" ); document.write( "Concentration =15% =0.15 \n" ); document.write( "=============================================================================== \n" ); document.write( "Solution B \n" ); document.write( "Amount = 6-x \n" ); document.write( "Concentration =30% = 0.3 \n" ); document.write( "============================================================================== \n" ); document.write( "Resultant Solution \n" ); document.write( "Amount =6 \n" ); document.write( "Concentration =20%=0.2 \n" ); document.write( "=============================================================================== \n" ); document.write( "Solution B \n" ); document.write( "[Amount Solution A * Concentration A] + [Amount Solution B * Concentration of B] = Amount of Resultant * Concentration of resultant \n" ); document.write( "(x)(0.15)+(6-x)(0.3)=(6)(0.2) \n" ); document.write( "0.15x+1.8-0.3x=1.2 \n" ); document.write( "0.15x-0.3x=1.2-1.8 \n" ); document.write( "-0.15x=-0.6 \n" ); document.write( "-0.15x/-0.15=-0.6/-0.15 \n" ); document.write( "x=4\r \n" ); document.write( "\n" ); document.write( "============================================================================= \n" ); document.write( "Solution A \n" ); document.write( "Amount = x=4 liters \n" ); document.write( "Concentration =15% =0.15 \n" ); document.write( "=============================================================================== \n" ); document.write( "Solution B \n" ); document.write( "Amount = 6-x =6-4=2 liters \n" ); document.write( "Concentration =30% = 0.3\r \n" ); document.write( "\n" ); document.write( "=============================================================================== \n" ); document.write( "4 liters of a 15% antifreeze solution and 2 liters of 30% antifreeze solution must be mixed to make 6 liters of a 20% antifreeze solution. \n" ); document.write( " |