document.write( "Question 512940: Find the area of the triangle whose vertices have coordinates (-8,3), (-8,-4), and (6,3). \n" ); document.write( "
Algebra.Com's Answer #342799 by Alan3354(69443)\"\" \"About 
You can put this solution on YOUR website!
Find the area of the triangle whose vertices have coordinates (-8,3), (-8,-4), and (6,3).
\n" ); document.write( "----------------
\n" ); document.write( "Label A(-8,3), B(-8,-4), and C(6,3).
\n" ); document.write( "--------
\n" ); document.write( "A & B have the same x value, call AB the base, length = 7
\n" ); document.write( "A & C have the same y value, so it's a right triangle, height = 14
\n" ); document.write( "Area = b*h/2 = 49 sq units.
\n" ); document.write( "--------------
\n" ); document.write( "A general method:
\n" ); document.write( "---
\n" ); document.write( "A.. B.. C.. A
\n" ); document.write( "-8 -8 +6 -8
\n" ); document.write( "+3 -4 +3 +3
\n" ); document.write( "-------
\n" ); document.write( "Add the diagonal products starting upper left
\n" ); document.write( "-8*-4 + -8*3 + 6*3 = 32 - 24 + 18 = 26
\n" ); document.write( "Add the diagonal products starting lower left
\n" ); document.write( "3*-8 + -4*6 + 3*-8 = -24 - 24 - 24 = -72
\n" ); document.write( "-------
\n" ); document.write( "The difference is 98.
\n" ); document.write( "The area is 1/2 that, = 49 sq units.
\n" ); document.write( "------------
\n" ); document.write( "Same answer, but the 2nd method works for ANY polygon, ANY # of sides.
\n" ); document.write( "
\n" );