document.write( "Question 509218: 5x(x+6)(x^2-1)^3 find the zeros of a polynomial function and state the multiplicity of each \n" ); document.write( "
Algebra.Com's Answer #341335 by Edwin McCravy(20056)\"\" \"About 
You can put this solution on YOUR website!
\r\n" );
document.write( "5x(x+6)(x²-1)³\r\n" );
document.write( "\r\n" );
document.write( "Write as a product of binomials\r\n" );
document.write( "\r\n" );
document.write( "5x(x+6)(x²-1)(x²-1)(x²-1)\r\n" );
document.write( "\r\n" );
document.write( "Now factor the last three factors\r\n" );
document.write( "\r\n" );
document.write( "5x(x+6)(x-1)(x+1)(x-1)(x+1)(x-1)(x+1)\r\n" );
document.write( "\r\n" );
document.write( "Set that = 0 \r\n" );
document.write( "\r\n" );
document.write( "5x(x+6)(x-1)(x+1)(x-1)(x+1)(x-1)(x+1) = 0\r\n" );
document.write( "\r\n" );
document.write( "and use the zero-factor property:\r\n" );
document.write( "\r\n" );
document.write( "5x=0; x+6=0; x-1=0; x+1=0; x-1=0; x+1=0; x-1=0; x+1=0; \r\n" );
document.write( " x=0;  x=-6;  x=1;   x=-1;  x=1;   x=-1;  x=1;   x=-1\r\n" );
document.write( "\r\n" );
document.write( "0 is a zero only 1 time, so it has multiplicity 1.\r\n" );
document.write( "-6 is a zero only 1 time, so it has multiplicity 1.\r\n" );
document.write( "1 is a zero 3 times, so it has multiplicity 3.\r\n" );
document.write( "-1 is a zero 3 times, so it has multiplicity 3.   \r\n" );
document.write( "  \r\n" );
document.write( "Edwin
\n" ); document.write( "
\n" );