document.write( "Question 507228: n^2+4n-12 \n" ); document.write( "
Algebra.Com's Answer #340526 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"n%5E2%2B4n-12\", we can see that the first coefficient is \"1\", the second coefficient is \"4\", and the last term is \"-12\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"1\" by the last term \"-12\" to get \"%281%29%28-12%29=-12\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"-12\" (the previous product) and add to the second coefficient \"4\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"-12\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"-12\":\r
\n" ); document.write( "\n" ); document.write( "1,2,3,4,6,12\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-4,-6,-12\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"-12\".\r
\n" ); document.write( "\n" ); document.write( "1*(-12) = -12
\n" ); document.write( "2*(-6) = -12
\n" ); document.write( "3*(-4) = -12
\n" ); document.write( "(-1)*(12) = -12
\n" ); document.write( "(-2)*(6) = -12
\n" ); document.write( "(-3)*(4) = -12\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"4\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1-121+(-12)=-11
2-62+(-6)=-4
3-43+(-4)=-1
-112-1+12=11
-26-2+6=4
-34-3+4=1
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"-2\" and \"6\" add to \"4\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"-2\" and \"6\" both multiply to \"-12\" and add to \"4\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"4n\" with \"-2n%2B6n\". Remember, \"-2\" and \"6\" add to \"4\". So this shows us that \"-2n%2B6n=4n\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"n%5E2%2Bhighlight%28-2n%2B6n%29-12\" Replace the second term \"4n\" with \"-2n%2B6n\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28n%5E2-2n%29%2B%286n-12%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"n%28n-2%29%2B%286n-12%29\" Factor out the GCF \"n\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"n%28n-2%29%2B6%28n-2%29\" Factor out \"6\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28n%2B6%29%28n-2%29\" Combine like terms. Or factor out the common term \"n-2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"n%5E2%2B4n-12\" factors to \"%28n%2B6%29%28n-2%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"n%5E2%2B4n-12=%28n%2B6%29%28n-2%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"%28n%2B6%29%28n-2%29\" to get \"n%5E2%2B4n-12\" or by graphing the original expression and the answer (the two graphs should be identical).\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Let me know if you need more help or if you need me to explain a step in more detail.
\n" ); document.write( "Feel free to email me at jim_thompson5910@hotmail.com
\n" ); document.write( "or you can visit my website here: http://www.freewebs.com/jimthompson5910/home.html\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Thanks,\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Jim
\n" ); document.write( "
\n" );