document.write( "Question 504787: The function arccos is defined as the inverse of the cosine function restricted to the interval [0,π]. Suppose we define a function f by f(x)=cos(x) for x in the interval [-π,0] and let g be the inverse function to f. find g(-1/2) and g(2^(1/2))/2 \n" ); document.write( "
Algebra.Com's Answer #339709 by stanbon(75887)![]() ![]() ![]() You can put this solution on YOUR website! The function arccos is defined as the inverse of the cosine function restricted to the interval [0,π]. \n" ); document.write( "------------------------------------ \n" ); document.write( "Suppose we define a function f by f(x)=cos(x) for x in the interval [-π,0] and let g be the inverse function to f. \n" ); document.write( "---------------------------------------- \n" ); document.write( "find g(-1/2) \n" ); document.write( "g(-1/2) = f^-1(-1/2) = arccos(-1/2) = 240 degrees or (-2/3)pi \n" ); document.write( "-------------------------------- \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "g(2^(1/2))/2 = g(1/8)/2 = f^-1(1/8)/2 = (1/2)arccos(-1/8) = (1/2)(-97.18) \n" ); document.write( "= -48.59 degrees = -48.59(pi/180) = -0.2699(pi) \n" ); document.write( "==================================================== \n" ); document.write( "Cheers, \n" ); document.write( "Stan H. \n" ); document.write( "================== \n" ); document.write( " \n" ); document.write( " |