document.write( "Question 502978: factor 9x^2-11x-58 \n" ); document.write( "
Algebra.Com's Answer #339031 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"9x%5E2-11x-58\", we can see that the first coefficient is \"9\", the second coefficient is \"-11\", and the last term is \"-58\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"9\" by the last term \"-58\" to get \"%289%29%28-58%29=-522\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"-522\" (the previous product) and add to the second coefficient \"-11\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"-522\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"-522\":\r
\n" ); document.write( "\n" ); document.write( "1,2,3,6,9,18,29,58,87,174,261,522\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-6,-9,-18,-29,-58,-87,-174,-261,-522\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"-522\".\r
\n" ); document.write( "\n" ); document.write( "1*(-522) = -522
\n" ); document.write( "2*(-261) = -522
\n" ); document.write( "3*(-174) = -522
\n" ); document.write( "6*(-87) = -522
\n" ); document.write( "9*(-58) = -522
\n" ); document.write( "18*(-29) = -522
\n" ); document.write( "(-1)*(522) = -522
\n" ); document.write( "(-2)*(261) = -522
\n" ); document.write( "(-3)*(174) = -522
\n" ); document.write( "(-6)*(87) = -522
\n" ); document.write( "(-9)*(58) = -522
\n" ); document.write( "(-18)*(29) = -522\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"-11\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1-5221+(-522)=-521
2-2612+(-261)=-259
3-1743+(-174)=-171
6-876+(-87)=-81
9-589+(-58)=-49
18-2918+(-29)=-11
-1522-1+522=521
-2261-2+261=259
-3174-3+174=171
-687-6+87=81
-958-9+58=49
-1829-18+29=11
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"18\" and \"-29\" add to \"-11\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"18\" and \"-29\" both multiply to \"-522\" and add to \"-11\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"-11x\" with \"18x-29x\". Remember, \"18\" and \"-29\" add to \"-11\". So this shows us that \"18x-29x=-11x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"9x%5E2%2Bhighlight%2818x-29x%29-58\" Replace the second term \"-11x\" with \"18x-29x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%289x%5E2%2B18x%29%2B%28-29x-58%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"9x%28x%2B2%29%2B%28-29x-58%29\" Factor out the GCF \"9x\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"9x%28x%2B2%29-29%28x%2B2%29\" Factor out \"29\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%289x-29%29%28x%2B2%29\" Combine like terms. Or factor out the common term \"x%2B2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"9x%5E2-11x-58\" factors to \"%289x-29%29%28x%2B2%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"9x%5E2-11x-58=%289x-29%29%28x%2B2%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"%289x-29%29%28x%2B2%29\" to get \"9x%5E2-11x-58\" or by graphing the original expression and the answer (the two graphs should be identical).
\n" ); document.write( "
\n" );