document.write( "Question 502181: (5a-4)= a+41/a-1\r
\n" );
document.write( "\n" );
document.write( "Please help if you can. \n" );
document.write( "
Algebra.Com's Answer #339007 by persian52(161)![]() ![]() You can put this solution on YOUR website! (5a-4)=a+(41)/(a)-1\r \n" ); document.write( "\n" ); document.write( "Since a is on the right-hand side of the equation, switch the sides so it is on the left-hand side of the equation. \n" ); document.write( "a+(41)/(a)-1=(5a-4)\r \n" ); document.write( "\n" ); document.write( "Find the LCD (least common denominator) of a+(41)/(a)-1+(5a-4). \n" ); document.write( "Least common denominator: a\r \n" ); document.write( "\n" ); document.write( "Multiply each term in the equation by a in order to remove all the denominators from the equation. \n" ); document.write( "a*a+(41)/(a)*a-1*a=(5a-4)*a\r \n" ); document.write( "\n" ); document.write( "Simplify the left-hand side of the equation by canceling the common terms. \n" ); document.write( "a^(2)-a+41=(5a-4)*a\r \n" ); document.write( "\n" ); document.write( "Simplify the right-hand side of the equation by multiplying out all the terms. \n" ); document.write( "a^(2)-a+41=5a^(2)-4a\r \n" ); document.write( "\n" ); document.write( "Move all terms not containing a to the right-hand side of the equation. \n" ); document.write( "a^(2)-a+41-5a^(2)+4a=0\r \n" ); document.write( "\n" ); document.write( "Since a^(2) and -5a^(2) are like terms, add -5a^(2) to a^(2) to get -4a^(2). \n" ); document.write( "-4a^(2)-a+41+4a=0\r \n" ); document.write( "\n" ); document.write( "Since -a and 4a are like terms, subtract 4a from -a to get 3a. \n" ); document.write( "-4a^(2)+3a+41=0\r \n" ); document.write( "\n" ); document.write( "Multiply each term in the equation by -1. \n" ); document.write( "-4a^(2)*-1+3a*-1+41*-1=0*-1\r \n" ); document.write( "\n" ); document.write( "Simplify the left-hand side of the equation by multiplying out all the terms. \n" ); document.write( "4a^(2)-3a-41=0*-1\r \n" ); document.write( "\n" ); document.write( "Multiply 0 by -1 to get 0. \n" ); document.write( "4a^(2)-3a-41=0\r \n" ); document.write( "\n" ); document.write( "Use the quadratic formula to find the solutions. In this case, the values are a=4, b=-3, and c=-41. \n" ); document.write( "a=(-b\~(b^(2)-4ac))/(2a) where aa^(2)+ba+c=0\r \n" ); document.write( "\n" ); document.write( "Substitute in the values of a=4, b=-3, and c=-41. \n" ); document.write( "a=(-(-3)\~((-3)^(2)-4(4)(-41)))/(2(4))\r \n" ); document.write( "\n" ); document.write( "Multiply -1 by the -3 inside the parentheses. \n" ); document.write( "a=(3\~((-3)^(2)-4(4)(-41)))/(2(4))\r \n" ); document.write( "\n" ); document.write( "Simplify the section inside the radical. \n" ); document.write( "a=(3\~(665))/(2(4))\r \n" ); document.write( "\n" ); document.write( "Simplify the denominator of the quadratic formula. \n" ); document.write( "a=(3\~(665))/(8)\r \n" ); document.write( "\n" ); document.write( "First, solve the + portion of \. \n" ); document.write( "a=(3+~(665))/(8)\r \n" ); document.write( "\n" ); document.write( "Next, solve the - portion of \. \n" ); document.write( "a=(3-~(665))/(8)\r \n" ); document.write( "\n" ); document.write( "The final answer is the combination of both solutions. \n" ); document.write( "a=(3+~(665))/(8),(3-~(665))/(8)_a |