document.write( "Question 502373: Simplify the following quotient of complex numbers into the form a + bi.
\n" ); document.write( "-7+6i/9+6i
\n" ); document.write( "how do u form a bi i dont understand
\n" ); document.write( "

Algebra.Com's Answer #338824 by geetha_rama(94)\"\" \"About 
You can put this solution on YOUR website!
To express the above in the form of a+bi , multiply and divide the expression by the conjugate of the denominator (9-6i).
\n" ); document.write( "(-7+6i)/(9+6i)
\n" ); document.write( "=((-7+6i) * (9-6i))/(9+6i)(9-6i)
\n" ); document.write( "= (-63+54i + 42i -36i^2)/81 -36i^2
\n" ); document.write( "= (-63 +96i+ 36)/81+36 (since i^2 = -1)
\n" ); document.write( "= (-27 + 96i)/117
\n" ); document.write( "= (-9 + 32i)/39 (divinding by 3)
\n" ); document.write( "= -9/39 + 32i/39
\n" ); document.write( "= -3/13 + 32i/39\r
\n" ); document.write( "\n" ); document.write( "This in the form of a+bi where a = -3/13 and b = 32/39
\n" ); document.write( "
\n" );