document.write( "Question 6273: Find two numbers with a geometric mean of sqrt 24 given that one number is two more than the other. \n" ); document.write( "
Algebra.Com's Answer #3370 by xcentaur(357)![]() ![]() ![]() You can put this solution on YOUR website! let the numbers be a and b. \n" ); document.write( "then geometric mean=(a+b)/2 \n" ); document.write( " \n" ); document.write( "given second number is two greater that first,b=a+2 \n" ); document.write( " \n" ); document.write( "therefore geometric mean=(a+a+2)/2=(2a+2)/2=[2(a+1)]/2=(a+1) \n" ); document.write( " \n" ); document.write( "From the question,it is required geometric mean be equal to sqrt24. \n" ); document.write( " \n" ); document.write( "Then we get, \n" ); document.write( "a+1=sqrt(24) \n" ); document.write( "(a+1)=sqrt(2*2*2*3) \n" ); document.write( "(a+1)=2sqrt(6) \n" ); document.write( "a=2sqrt(6)-1 \n" ); document.write( " \n" ); document.write( "then value of b=a+2 \n" ); document.write( "=2sqrt(6)-1+2 \n" ); document.write( "=2sqrt(6)+1 \n" ); document.write( " \n" ); document.write( "cross check: \n" ); document.write( "geometric mean of [2sqrt(6)-1] and [2sqrt(6)+1] is= \n" ); document.write( "={[2sqrt(6)-1]+[2sqrt(6)+1]}/2 \n" ); document.write( "={2[2sqrt(6)]}/2 \n" ); document.write( "=2sqrt(6) \n" ); document.write( "which is equal to sqrt(24) \n" ); document.write( " \n" ); document.write( "Hence these numbers are correct \n" ); document.write( "[2sqrt(6)-1] \n" ); document.write( "[2sqrt(6)+1] \n" ); document.write( " Hope this helps, \n" ); document.write( "good luck. \n" ); document.write( " |