document.write( "Question 6273: Find two numbers with a geometric mean of sqrt 24 given that one number is two more than the other. \n" ); document.write( "
Algebra.Com's Answer #3370 by xcentaur(357)\"\" \"About 
You can put this solution on YOUR website!
let the numbers be a and b.
\n" ); document.write( "then geometric mean=(a+b)/2
\n" ); document.write( "

\n" ); document.write( "given second number is two greater that first,b=a+2
\n" ); document.write( "

\n" ); document.write( "therefore geometric mean=(a+a+2)/2=(2a+2)/2=[2(a+1)]/2=(a+1)
\n" ); document.write( "

\n" ); document.write( "From the question,it is required geometric mean be equal to sqrt24.
\n" ); document.write( "

\n" ); document.write( "Then we get,
\n" ); document.write( "a+1=sqrt(24)
\n" ); document.write( "(a+1)=sqrt(2*2*2*3)
\n" ); document.write( "(a+1)=2sqrt(6)
\n" ); document.write( "a=2sqrt(6)-1
\n" ); document.write( "

\n" ); document.write( "then value of b=a+2
\n" ); document.write( "=2sqrt(6)-1+2
\n" ); document.write( "=2sqrt(6)+1
\n" ); document.write( "

\n" ); document.write( "cross check:
\n" ); document.write( "geometric mean of [2sqrt(6)-1] and [2sqrt(6)+1] is=
\n" ); document.write( "={[2sqrt(6)-1]+[2sqrt(6)+1]}/2
\n" ); document.write( "={2[2sqrt(6)]}/2
\n" ); document.write( "=2sqrt(6)
\n" ); document.write( "which is equal to sqrt(24)
\n" ); document.write( "

\n" ); document.write( "Hence these numbers are correct
\n" ); document.write( "[2sqrt(6)-1]

\n" ); document.write( "[2sqrt(6)+1]

\n" ); document.write( "
Hope this helps,
\n" ); document.write( "good luck.
\n" ); document.write( "
\n" );