document.write( "Question 50472: factor the following:
\n" );
document.write( "
\n" );
document.write( "1)x squared + 6x + one
\n" );
document.write( "2)x squared + 8x + 2
\n" );
document.write( "3)x squared - 8 - 5
\n" );
document.write( "4)x squared + 12 x + twenty-one
\n" );
document.write( "5)x squared + 3 x + 3/2[-1/2, 2]
\n" );
document.write( "6)x squared - 2 x + 1/2
\n" );
document.write( "7)x to the power of four + 16y
\n" );
document.write( "8)4x to the power of four + y to the power of four
\n" );
document.write( "9)16x to the power of four z + 4z to the power of five
\n" );
document.write( "10)10xz to the power of four + 40x \n" );
document.write( "
Algebra.Com's Answer #33523 by AnlytcPhil(1806)![]() ![]() You can put this solution on YOUR website! The first seven cannot be factored, but the last\r\n" ); document.write( "three can be:\r\n" ); document.write( "\r\n" ); document.write( "===============================================\r\n" ); document.write( "\r\n" ); document.write( "8)4x to the power of four + y to the power of four\r\n" ); document.write( "\r\n" ); document.write( "4x4 + y4\r\n" ); document.write( "\r\n" ); document.write( "Add and subtract 4x2y2\r\n" ); document.write( "\r\n" ); document.write( "4x4 + 4x2y2 + y4 - 4x2y2\r\n" ); document.write( "\r\n" ); document.write( "The first three terms can be factored as a perfect square, and\r\n" ); document.write( "the last term is itself a perfect square.\r\n" ); document.write( "\r\n" ); document.write( "(2x2 + y2)2 - (2xy)2\r\n" ); document.write( "\r\n" ); document.write( "This is the difference of two perfect squares:\r\n" ); document.write( "\r\n" ); document.write( "[(2x2 + y2) - 2xy][(2x2 + y2) + 2xy]\r\n" ); document.write( "\r\n" ); document.write( "Get rid of unnecessary grouping symbols:\r\n" ); document.write( "\r\n" ); document.write( "(2x2 + y2 - 2xy)(2x2 + y2 + 2xy)\r\n" ); document.write( "\r\n" ); document.write( "Arrange in descending powers of x and ascending\r\n" ); document.write( "powers of y\r\n" ); document.write( "\r\n" ); document.write( "(2x2 - 2xy + y2)(2x2 + 2xy + y2)\r\n" ); document.write( "\r\n" ); document.write( "===============================================\r\n" ); document.write( "\r\n" ); document.write( "9)16x to the power of four z + 4z to the power of five\r\n" ); document.write( "\r\n" ); document.write( "16x4z + 4z\r\n" ); document.write( "\r\n" ); document.write( "Factor out GCF 4z\r\n" ); document.write( "\r\n" ); document.write( "4z{4x4 + 1}\r\n" ); document.write( "\r\n" ); document.write( "Add and subtract 4x2 in the braces\r\n" ); document.write( "\r\n" ); document.write( "4z{4x4 + 4x2 + 1 - 4x2}\r\n" ); document.write( "\r\n" ); document.write( "The first three terms in braces can be factored as a\r\n" ); document.write( "perfect square, and the last term is itself a perfect \r\n" ); document.write( "square.\r\n" ); document.write( "\r\n" ); document.write( "4z{(2x2 + 1)2 - (2x)2}\r\n" ); document.write( "\r\n" ); document.write( "The expression in braces is the difference of two \r\n" ); document.write( "perfect squares\r\n" ); document.write( "\r\n" ); document.write( "4z{[(2x2 + 1) - (2x)][(2x2 + 1) + (2x)]\r\n" ); document.write( "\r\n" ); document.write( "Get rid of unnecessary grouping symbols\r\n" ); document.write( "\r\n" ); document.write( "4z(2x2 + 1 - 2x)(2x2 + 1 + 2x)\r\n" ); document.write( "\r\n" ); document.write( "Arrange the expressions in parentheses in descending\r\n" ); document.write( "order of x\r\n" ); document.write( "\r\n" ); document.write( "4z(2x2 - 2x + 1)(2x2 + 2x + 1)\r\n" ); document.write( "\r\n" ); document.write( "===============================================\r\n" ); document.write( "\r\n" ); document.write( "10)10xz to the power of four + 40x\r\n" ); document.write( "\r\n" ); document.write( "10xz4 + 40x\r\n" ); document.write( "\r\n" ); document.write( "Factor out GCF 10x\r\n" ); document.write( "\r\n" ); document.write( "10x{z4 + 4}\r\n" ); document.write( "\r\n" ); document.write( "Add and subtract 4z2 in the braces\r\n" ); document.write( "\r\n" ); document.write( "10x{z4 + 4z2 + 4 - 4z2}\r\n" ); document.write( "\r\n" ); document.write( "The first three terms in braces can be factored as a\r\n" ); document.write( "perfect square, and the last term is itself a perfect \r\n" ); document.write( "square.\r\n" ); document.write( "\r\n" ); document.write( "10x{(z2 + 2)2 - (2z)2}\r\n" ); document.write( "\r\n" ); document.write( "The expression in braces is the difference of two \r\n" ); document.write( "perfect squares\r\n" ); document.write( "\r\n" ); document.write( "10x{[(z2 + 2) - (2z)][(z2 + 2) + (2z)]\r\n" ); document.write( "\r\n" ); document.write( "Get rid of unnecessary grouping symbols\r\n" ); document.write( "\r\n" ); document.write( "10x(z2 + 2 - 2z)(z2 + 2 + 2z)\r\n" ); document.write( "\r\n" ); document.write( "Arrange the expressions in parentheses in descending\r\n" ); document.write( "order of z\r\n" ); document.write( "\r\n" ); document.write( "10x(z2 - 2z + 2)(z2 + 2z + 2)\r\n" ); document.write( "\r\n" ); document.write( "Edwin\n" ); document.write( " |