document.write( "Question 490711: Assignment: \r
\n" );
document.write( "\n" );
document.write( "Proove the points A(6,-13) B(-2,2) C(13,10) and D (21, -5) are the vertices of the square. Show that the diagonals bisect each other and of equal length. Please have a plan of what you're going to do before proceeding into solving the problem.
\n" );
document.write( "------------------------------------------------------------------------------\r
\n" );
document.write( "\n" );
document.write( "Hello! How am I going to solve this problem? Am I going to get their distances and midpoints? Please help me. Thank you :) \n" );
document.write( "
Algebra.Com's Answer #334237 by richard1234(7193)![]() ![]() You can put this solution on YOUR website! First, you can show that AB, BC, CD, and DA are all of equal length. For example,\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "However this only proves that the quadrilateral is a rhombus. To prove it is a square, you could perhaps show that one of the angles is 90, then it will follow that the quadrilateral is a square.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Take the slope of two segments. For example, the slope of line AB is\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "and the slope of BC is\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Hence, AB and BC are perpendicular, and it follows that ABCD is a square.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |