document.write( "Question 487933: How do you differentiate the properties associative,communitive, and distributive \n" ); document.write( "
Algebra.Com's Answer #333199 by MathLover1(20849)![]() ![]() You can put this solution on YOUR website! The \"Commutative Laws\" say you can swap numbers over and still get the same answer ...\r \n" ); document.write( "\n" ); document.write( "... when you add (a + b = b + a) or when you multiply (a * b = b * a)\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "a + b = b + a \n" ); document.write( "a * b = b * a\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The \"Associative Laws\" say that it doesn't matter how you group the numbers (i.e. which you calculate first) ...\r \n" ); document.write( "\n" ); document.write( "... when you add (a + b) + c = a + (b + c) or when you multiply (a * b) * c = a * (b *c)\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( "(a + b) + c = a + (b + c) \n" ); document.write( "(a * b) * c = a * (b * c)\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The \"Distributive Law\" is the BEST one of all, but needs careful attention.\r \n" ); document.write( "\n" ); document.write( "This is what it lets you do:\r \n" ); document.write( "\n" ); document.write( "3*(2+4)\r \n" ); document.write( "\n" ); document.write( "the 3* can be \"distributed\" across the 2+4, into 3*2 and 3*4\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "the \"Distributive Law\" says:\r \n" ); document.write( "\n" ); document.write( "you get the same answer when you:\r \n" ); document.write( "\n" ); document.write( " multiply a number by a group of numbers added together, or \n" ); document.write( " do each multiply separately then add them\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( "a * (b + c) = a * b + a * c\r \n" ); document.write( "\n" ); document.write( "These laws are to do with adding or multiplying, \n" ); document.write( "\n" ); document.write( "The Commutative Law \n" ); document.write( "\n" ); document.write( "Example:\r \n" ); document.write( "\n" ); document.write( " 12 / 3 = 4, but \n" ); document.write( " 3 / 12 = ¼\r \n" ); document.write( "\n" ); document.write( "The Associative Law \n" ); document.write( "\n" ); document.write( "Example:\r \n" ); document.write( "\n" ); document.write( " (9 – 4) – 3 = 5 – 3 = 2, but \n" ); document.write( " 9 – (4 – 3) = 9 – 1 = 8\r \n" ); document.write( "\n" ); document.write( " The Distributive Law \n" ); document.write( "\n" ); document.write( "Example:\r \n" ); document.write( "\n" ); document.write( " 24 / (4 + 8) = 24 / 12 = 2, but \n" ); document.write( " 24 / 4 + 24 / 8 = 6 + 3 = 9\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |