document.write( "Question 487066: Find the normal approximation for the binomial probability that x = 5, where n = 12 and p = 0.7. Compare this probability to the value of P(x=5) found in Table 2 of Appendix B in your textbook. \n" ); document.write( "
Algebra.Com's Answer #332952 by Theo(13342)![]() ![]() You can put this solution on YOUR website! n = 12 \n" ); document.write( "x = 5 \n" ); document.write( "p = .7 \n" ); document.write( "q = 1 - .7 = .3 \n" ); document.write( "p is probability of success \n" ); document.write( "q is probability of failure \n" ); document.write( "p(x) = nCx * p^x * q^(n-x) \n" ); document.write( "for x = 5 and n = 12, this becomes: \n" ); document.write( "p(5) = 12C5 * (.7)^5 * (.3)^7 which becomes: \n" ); document.write( "p(5) = 792 * .16807 * .0002187 which becomes: \n" ); document.write( "p(5) = .029111472\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "nCx is the combination formula of n! / (x! * (n-x)!))\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "the probabilities for x = 1 to x = 12 are shown below.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( "p 0.7\r\n" ); document.write( "q 0.3\r\n" ); document.write( "n 12\r\n" ); document.write( "x p(x)\r\n" ); document.write( "0 5.31441E-07\r\n" ); document.write( "1 1.48803E-05\r\n" ); document.write( "2 0.000190964\r\n" ); document.write( "3 0.001485279\r\n" ); document.write( "4 0.007797716\r\n" ); document.write( "5 0.029111472 ***** p(x = 5)\r\n" ); document.write( "6 0.079247896\r\n" ); document.write( "7 0.158495792\r\n" ); document.write( "8 0.231139696\r\n" ); document.write( "9 0.239700426\r\n" ); document.write( "10 0.167790298\r\n" ); document.write( "11 0.071183763\r\n" ); document.write( "12 0.013841287\r\n" ); document.write( " \r\n" ); document.write( " 1 total probability equals 1 (as it should)\r\n" ); document.write( "\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "this should be approximately equal to the probability found in your textbook. \n" ); document.write( "if not, let me know what is in table 2 of appendix b in your notebook.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |