document.write( "Question 483998: In a regular pentagon, lines are drawn so that every possible pair of vertices are connected. How many triangles are in the resulting figure?\r
\n" ); document.write( "\n" ); document.write( "choose the answer and explain the reason to choose your response
\n" ); document.write( "35
\n" ); document.write( "30
\n" ); document.write( "20
\n" ); document.write( "25
\n" ); document.write( "

Algebra.Com's Answer #331314 by chessace(471)\"\" \"About 
You can put this solution on YOUR website!
The major problem with this is to avoid counting a triangle twice.
\n" ); document.write( "Each edge has a small triangle with no cross lines: 5
\n" ); document.write( "Each vertex has a small triange with no cross lines: 5
\n" ); document.write( "Each edge has 2 triangles with 1 cross line (its small triagle merged with one of the small triagles of its 2 vertices): 10
\n" ); document.write( "Each vertex (using its 2 original edges) has a triangle with 2 cross lines: 5
\n" ); document.write( "Each original edge to the opposite vertex has a triangle with 5 little cross lines: 5
\n" ); document.write( "Total = 30.
\n" ); document.write( "The previously posted solution counted the small triangle by an edge twice, hence over by 5.
\n" ); document.write( "
\n" ); document.write( "
\n" );