document.write( "Question 482875: What is the probability of obtaining a sum of at least 7 when rolling a pair of dice?
\n" ); document.write( "I don't know how to get this answer nor set it up for my homework assignment.Can I get someone to help me with this one? Thanks!
\n" ); document.write( "

Algebra.Com's Answer #330996 by bucky(2189)\"\" \"About 
You can put this solution on YOUR website!
If you roll a pair of fair dice, there are 36 possible outcomes. For each number you roll on the first die you have six possible numbers turning up on the second die. Six possible outcomes on the first die times 6 possible outcomes on the second die. Here are the 36 possible outcomes in the format of first die outcome, second die outcome:
\n" ); document.write( ".
\n" ); document.write( "1,1
\n" ); document.write( "1,2
\n" ); document.write( "1,3
\n" ); document.write( "1,4
\n" ); document.write( "1,5
\n" ); document.write( "1,6 *
\n" ); document.write( "2,1
\n" ); document.write( "2,2
\n" ); document.write( "2,3
\n" ); document.write( "2,4
\n" ); document.write( "2,5 *
\n" ); document.write( "2,6 *
\n" ); document.write( "3,1
\n" ); document.write( "3,2
\n" ); document.write( "3,3
\n" ); document.write( "3,4 *
\n" ); document.write( "3,5 *
\n" ); document.write( "3,6 *
\n" ); document.write( "4,1
\n" ); document.write( "4,2
\n" ); document.write( "4,3 *
\n" ); document.write( "4,4 *
\n" ); document.write( "4,5 *
\n" ); document.write( "4,6 *
\n" ); document.write( "5,1
\n" ); document.write( "5,2 *
\n" ); document.write( "5,3 *
\n" ); document.write( "5,4 *
\n" ); document.write( "5,5 *
\n" ); document.write( "5,6 *
\n" ); document.write( "6,1 *
\n" ); document.write( "6,2 *
\n" ); document.write( "6,3 *
\n" ); document.write( "6,4 *
\n" ); document.write( "6,5 *
\n" ); document.write( "6,6 *
\n" ); document.write( ".
\n" ); document.write( "I put an asterisk next to each outcome for which the total on the two dice is 7 or more than 7. Notice that if you count all the asterisks, there are 21 possible \"winners\" being that their total is 7 or more than 7 as required by the problem.
\n" ); document.write( ".
\n" ); document.write( "The total number of possible outcomes is 36 and there are 21 possible \"winners.\" Therefore, the probability of winning is 21 out of 36 or 21 divided by 36. If you do the division, the answer is 0.58333333 or you have a 58.333333% chance that on a single roll you will get a total of 7 or greater.
\n" ); document.write( ".
\n" ); document.write( "Hope this helps you a little further along on your journey through probability.
\n" ); document.write( ".
\n" ); document.write( "
\n" );