document.write( "Question 481497: Find the focus and directrix of each parabola with the given equation. \r
\n" );
document.write( "\n" );
document.write( " a). x^=4y
\n" );
document.write( "
\n" );
document.write( " b). y^=-4x \n" );
document.write( "
Algebra.Com's Answer #329844 by lwsshak3(11628)![]() ![]() ![]() You can put this solution on YOUR website! Find the focus and directrix of each parabola with the given equation. \n" ); document.write( "a). x^=4y \n" ); document.write( "b). y^=-4x \n" ); document.write( "** \n" ); document.write( "a). x^2=4y \n" ); document.write( "This is an equation of a parabola with a vertical axis of symmetry. \n" ); document.write( "Its standard form: (x-h)^2=4p(y-k), with (h,k) being the (x,y) coordinates of the vertex. \n" ); document.write( "For given equation: \n" ); document.write( "parabola opens upwards \n" ); document.write( "Vertex(0,0) \n" ); document.write( "4p=4 \n" ); document.write( "p=1 \n" ); document.write( "Focus:(0,1) \n" ); document.write( "Directrix: y=-1 \n" ); document.write( "see the graph below as a visual check on the answers: \n" ); document.write( ".. \n" ); document.write( "y=±x^2/4 \n" ); document.write( " \n" ); document.write( ".. \n" ); document.write( "b). y^2=-4x \n" ); document.write( "This is an equation of a parabola with a horizontal axis of symmetry. \n" ); document.write( "Its standard form: (y-k)^2=4p(x-h), with (h,k) being the (x,y) coordinates of the vertex. \n" ); document.write( "For given equation: \n" ); document.write( "parabola opens leftward \n" ); document.write( "Vertex(0,0) \n" ); document.write( "4p=4 \n" ); document.write( "p=1 \n" ); document.write( "Focus:(-1,0) \n" ); document.write( "Directrix: x=1 \n" ); document.write( "see the graph below as a visual check on the answers: \n" ); document.write( ".. \n" ); document.write( "y=±(-4x)^.5 \n" ); document.write( " \n" ); document.write( ".. \n" ); document.write( " |