\n" );
document.write( " \r
\n" );
document.write( "\n" );
document.write( "
\r
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "\r\n" );
document.write( "First get it in standard form, which is either\r\n" );
document.write( " \r\n" );
document.write( "
if the hyperbola opens right and left, \r\n" );
document.write( " \r\n" );
document.write( "and the slopes of the asymptotes are
\r\n" );
document.write( " \r\n" );
document.write( "or\r\n" );
document.write( " \r\n" );
document.write( "
if the hyperbola opens upward and downward.\r\n" );
document.write( " \r\n" );
document.write( "and the slopes of the asymptotes are
\r\n" );
document.write( " \r\n" );
document.write( " \r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "Get the 65 off the left side:\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "Factor out the coefficient of
out of the \r\n" );
document.write( "first two terms on the left. \r\n" );
document.write( "Factor out the coefficient of
out of the \r\n" );
document.write( "last two terms on the left. \r\n" );
document.write( " \r\n" );
document.write( "
\r\n" );
document.write( " \r\n" );
document.write( "Complete the square on
by multiplying\r\n" );
document.write( "the coefficient of x, which is -10, by
getting -5,\r\n" );
document.write( "and then squaring -5, getting 25. And we add that inside the\r\n" );
document.write( "first parentheses. However since there is a 4 in front of the\r\n" );
document.write( "first parentheses, adding 25 inside the parentheses amounts\r\n" );
document.write( "to adding 4*25 or 100 to the left side, so we must add 100 \r\n" );
document.write( "to the right side:\r\n" );
document.write( " \r\n" );
document.write( "
\r\n" );
document.write( " \r\n" );
document.write( "Complete the square on
by multiplying\r\n" );
document.write( "the coefficient of y, which is 2, by
getting 1,\r\n" );
document.write( "and then squaring 1, getting 1. And we add that inside the\r\n" );
document.write( "second parentheses. However since there is a -7 in front of the\r\n" );
document.write( "second parentheses, adding 1 inside the parentheses amounts\r\n" );
document.write( "to adding
or -7 to the left side, so we must add -7 \r\n" );
document.write( "to the right side:\r\n" );
document.write( " \r\n" );
document.write( "
\r\n" );
document.write( " \r\n" );
document.write( "Factor the parentheses as squares of binomials, and combine\r\n" );
document.write( "the numbers on the right:\r\n" );
document.write( " \r\n" );
document.write( "
\r\n" );
document.write( " \r\n" );
document.write( "Get a 1 on the right by dividing through by 4\r\n" );
document.write( " \r\n" );
document.write( "
\r\n" );
document.write( " \r\n" );
document.write( "
\r\n" );
document.write( " \r\n" );
document.write( "Since the variable x comes first in the standard form, the\r\n" );
document.write( "hyperbola opens right and left.\r\n" );
document.write( " \r\n" );
document.write( "So we compare that to:\r\n" );
document.write( " \r\n" );
document.write( "
\r\n" );
document.write( " \r\n" );
document.write( "The center is at (5,-1). So we plot the center:\r\n" );
document.write( " \r\n" );
document.write( "
\r\n" );
document.write( " \r\n" );
document.write( "
so
, the semi-transverse axis is\r\n" );
document.write( "
units long, and that's about 2.6. So we draw the \r\n" );
document.write( "complete transverse axis right and left about 2.6 unit from the \r\n" );
document.write( "center. The tranverse axis is the horizontal green line below:\r\n" );
document.write( " \r\n" );
document.write( "
\r\n" );
document.write( " \r\n" );
document.write( "\"Trans\" means \"across\" and \"VERse\" means \"VERtices\", so the \r\n" );
document.write( "transverse axis goes across from vertex to vertex, and so the \r\n" );
document.write( "ends of the transverse axis are the vertices and they are found \r\n" );
document.write( "by adding and subtracting
from the x-coordinate \r\n" );
document.write( "of the center, so \r\n" );
document.write( "\r\n" );
document.write( "The VERTICES are (5+
,-1) and (5-
,-1)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "
so
, the semi-conjugate axis is 2 units\r\n" );
document.write( "long, so we draw the complete conjugate axis up and down\r\n" );
document.write( "2 units from the center, that is, the conjugate axis is the \r\n" );
document.write( "vertical green line below:\r\n" );
document.write( " \r\n" );
document.write( "
\r\n" );
document.write( " \r\n" );
document.write( "Now we draw in the defining rectangle\r\n" );
document.write( " \r\n" );
document.write( "
\r\n" );
document.write( " \r\n" );
document.write( "Now we can draw the asymptotes which are the extended diagonals\r\n" );
document.write( "of the defining rectangle:\r\n" );
document.write( " \r\n" );
document.write( "
\r\n" );
document.write( " \r\n" );
document.write( " \r\n" );
document.write( "and we can sketch in the hyperbola:\r\n" );
document.write( " \r\n" );
document.write( "
\r\n" );
document.write( " \r\n" );
document.write( "The slopes of the asymptotes are
\r\n" );
document.write( " \r\n" );
document.write( "They pass through the center (5,-1) so we use the point-slope\r\n" );
document.write( "formula:\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "
\r\n" );
document.write( "
\r\n" );
document.write( "
\r\n" );
document.write( "
\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "That's the equation of one of the asymptotes. The other one:\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "
\r\n" );
document.write( "
\r\n" );
document.write( "
\r\n" );
document.write( "
\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "The foci are the two points \"c\" units right and left of the\r\n" );
document.write( "vertex, where \r\n" );
document.write( "\r\n" );
document.write( "c² = a² + b²\r\n" );
document.write( "c² = (sqrt(7))² + 2²\r\n" );
document.write( "c² = 7 + 4\r\n" );
document.write( "c² = 11\r\n" );
document.write( "c = ±
\r\n" );
document.write( "\r\n" );
document.write( "So the foci are (5+
,-1) and (5-
,-1),\r\n" );
document.write( "Here they are plotted. They are inside the branches of they\r\n" );
document.write( "hyperbola:\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "I don't have time to do the other one. It's a hyperbola\r\n" );
document.write( "that opens upward and downward. But I think you can do it.\r\n" );
document.write( "Just remember that the transverse axis is vertical and the\r\n" );
document.write( "conjugate axis is horizontal.\r\n" );
document.write( "\r\n" );
document.write( "Edwin
\n" );
document.write( "