document.write( "Question 479050: _Find f(x)=ax^2+bx+c, given that f(0)=-8 and the vertex is (1,-9)
\n" );
document.write( "_Find f(x)=ax^2+bx+c, given that the vertex is (2,-1) and the point (4,3) lies on the parabola \n" );
document.write( "
Algebra.Com's Answer #328305 by lwsshak3(11628)![]() ![]() ![]() You can put this solution on YOUR website! _Find f(x)=ax^2+bx+c, given that f(0)=-8 and the vertex is (1,-9) \n" ); document.write( "_Find f(x)=ax^2+bx+c, given that the vertex is (2,-1) and the point (4,3) lies on the parabola \n" ); document.write( "** \n" ); document.write( "First equation: \n" ); document.write( "Standard form of a parabola: y=A(x-h)^2+k, with (h,k) being the (x,y) coordinates of the vertex. \n" ); document.write( "using given point (0,-8) and vertex (1,-9) to solve for A: \n" ); document.write( "-8=A(0-1)^2-9 \n" ); document.write( "1=A \n" ); document.write( "Equation: \n" ); document.write( "y=(x-1)^2-9 \n" ); document.write( "f(x)=x^2-2x+1-9 \n" ); document.write( "Equation: \n" ); document.write( "f(x)=x^2-2x-8 \n" ); document.write( ".. \n" ); document.write( "Second Equation: \n" ); document.write( "using given point (4,3) and vertex (2,-1) to solve for A: \n" ); document.write( "3=A(4-2)^2-1 \n" ); document.write( "4=4A \n" ); document.write( "A=1 \n" ); document.write( "Equation: \n" ); document.write( "y=(x-2)^2-1 \n" ); document.write( "f(x)=x^2-4x+4-1 \n" ); document.write( "Equation: \n" ); document.write( "f(x)=x^2-4x+3 \n" ); document.write( " |