document.write( "Question 478231: The flower garden has the shape of a right triangle. 17ft of a perennial border forms the hypotenuse of the triangle, and one leg is 7ft longer than the other leg. Find the lengths of the legs. \n" ); document.write( "
Algebra.Com's Answer #327669 by cleomenius(959)![]() ![]() You can put this solution on YOUR website! Since this is a right triangle, we can use a^2 + b^2 = c^2\r \n" ); document.write( "\n" ); document.write( "Let one leg be x. \n" ); document.write( "Let the other leg be x + 7.\r \n" ); document.write( "\n" ); document.write( "x^2 + (x + 7)^2 = 289 \n" ); document.write( "x^2 + x^2 + 14x + 49 = 289 \n" ); document.write( "2x^2 + 14x - 240 = 0 \n" ); document.write( "2 ( x^2 + 7x - 120) = 0 \n" ); document.write( "2 (x - 8) ( x + 15) = 0\r \n" ); document.write( "\n" ); document.write( "x will = 8, one leg of the triangle. \n" ); document.write( "8 + 7 = 15, the other leg of the triangle. \n" ); document.write( "8^2 + 15^2 = 17^2 \n" ); document.write( "64 + 225 = 289, The results do check.\r \n" ); document.write( "\n" ); document.write( "Cleomenius.\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |