document.write( "Question 478091: A person drives 390 miles on a stretch of road. Half the distance is driven traveling 5 miles per hour below the speed limit, and half the distance is driven traveling 5 miles per hour above the speed limit. If the time spent traveling at the slower speed exceeds the time spent traveling at the faster speed by 24 minutes, find the speed limit. \n" ); document.write( "
Algebra.Com's Answer #327598 by mananth(16946)![]() ![]() You can put this solution on YOUR website! first part x-5 mph 195 miles\r \n" ); document.write( "\n" ); document.write( "second part x+5 mph 195 miles\r \n" ); document.write( "\n" ); document.write( "195/(x-5)-195/(x+5) = 0.4 hours\r \n" ); document.write( "\n" ); document.write( "LCD = (x+5)(x-5) \n" ); document.write( "Multiply equation by LCD\r \n" ); document.write( "\n" ); document.write( "195/(x+5)-195/(x-5)= (x+5)(x-5)*0.4\r \n" ); document.write( "\n" ); document.write( "195x+975-195x+975=0.4(x^2-25)\r \n" ); document.write( "\n" ); document.write( "1950=0.4x^2-10 \n" ); document.write( "1960=0.4x^2 \n" ); document.write( "1960/0.4=x^2 \n" ); document.write( "4900 = x^2\r \n" ); document.write( "\n" ); document.write( "x= 70 mph the speed limit\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |