document.write( "Question 476512: find the minor axis of the ellipse using the givin equation [(x+4)^2 over (6^2)] + [(y+8)^2 over (7^2)]=1 \n" ); document.write( "
Algebra.Com's Answer #326729 by lwsshak3(11628)\"\" \"About 
You can put this solution on YOUR website!
find the minor axis of the ellipse using the givin equation [(x+4)^2 over (6^2)] + [(y+8)^2 over (7^2)]=1
\n" ); document.write( "**
\n" ); document.write( "(x+4)^2/(6^2) + (y+8)^2/(7^2)=1
\n" ); document.write( "This is an equation of an ellipse with vertical major axis of the standard form:
\n" ); document.write( "(x-h)^2/b^2+(y-k)^2/a^2=1 , a>b, with (h,k) being the (x,y) coordinates of the center
\n" ); document.write( "For given equation:
\n" ); document.write( "center: (-4,-8)
\n" ); document.write( "a=7
\n" ); document.write( "b=6
\n" ); document.write( "length of minor axis=2b=12
\n" ); document.write( "end points of minor axis: (-4±b,-8)=(-4±6,-8) or (-10,-8) and (2,-8)
\n" ); document.write( "
\n" );