document.write( "Question 475934: An exam has ten true-false questions. A student who has
\n" ); document.write( "not studied answers all ten questions by just guessing. Find
\n" ); document.write( "the probability that the student correctly answers the given
\n" ); document.write( "number of questions.
\n" ); document.write( "(a) All ten questions
\n" ); document.write( "(b) Exactly seven questions\r
\n" ); document.write( "\n" ); document.write( "thankyou! :)
\n" ); document.write( "

Algebra.Com's Answer #326381 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
This is a binomial distribution problem. Recall that the pdf of a binomial distribution for n number of trials with probability p is\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "P(X = x) = (n C x)*(p)^x*(1-p)^(n-x)\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "For more help with binomial distributions, see this calculator.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In this case, n = 10 (ie there are 10 trials since there are 10 questions) and p=1/2=0.5\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "a)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In part a), x = 10 (since we want to get all 10 correct)\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "P(X = 10) = (10 C 10)*(0.5)^(10)*(1-0.5)^(10-10) \r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "P(X = 10) = (10 C 10)*(0.5)^(10)*(0.5)^(10-10) \r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: 10 C 10 = (10!)/(10!(10-10)!) = 1\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "P(X = 10) = (1)*(0.5)^(10)*(0.5)^0 \r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "P(X = 10) = (1)*(0.0009765625)*(1) \r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "P(X = 10) = 0.0009765625\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the probability of getting all 10 correct is 0.0009765625 (which is roughly 0.098 % .... a very very small chance)\r
\n" ); document.write( "\n" ); document.write( "----------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "b)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In part b), x = 7 (since we want exactly 7)\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "P(X = 7) = (10 C 7)*(0.5)^(7)*(1-0.5)^(10-7) \r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "P(X = 7) = (10 C 7)*(0.5)^(7)*(0.5)^(10-7) \r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: 10 C 7 = (10!)/(7!(10-7)!) = 120\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "P(X = 7) = (120)*(0.5)^(7)*(0.5)^3 \r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "P(X = 7) = (120)*(0.0078125)*(0.125) \r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "P(X = 7) = 0.1171875\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the probability of getting exactly 7 correct is 0.1171875 (which is roughly 11.72%)\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "For more help with binomial distributions, see this calculator.
\n" ); document.write( "
\n" );