document.write( "Question 475655: The tens digit is 5 more than the unit digit. If the sum of their squares is 53, find the number. \n" ); document.write( "
Algebra.Com's Answer #326211 by ewatrrr(24785)\"\" \"About 
You can put this solution on YOUR website!
 
\n" ); document.write( "Hi,
\n" ); document.write( "The tens digit is 5 more than the unit digit
\n" ); document.write( "let x and (x+5) represent the unit's and ten's digits respectively
\n" ); document.write( "Question states***
\n" ); document.write( " x^2 + (x+5)^2 = 53
\n" ); document.write( " 2x^2 + 10x - 28 = 0
\n" ); document.write( " x^2 + 5x - 14 = 0
\n" ); document.write( "factoring
\n" ); document.write( "(x+7)(x-2) = 0
\n" ); document.write( "(x+7)= 0 x = -7 tossing out negative number for a digit amount
\n" ); document.write( "(x-2) = 0 x = 2, one's digit, ten digit is 7. Number is 72.\r
\n" ); document.write( "\n" ); document.write( "CHECKING our Answer***
\n" ); document.write( " 2^2 + 7^2 = 4 + 49 = 53 \n" ); document.write( "
\n" );