document.write( "Question 475599: Factor the polynomial completly\r
\n" ); document.write( "\n" ); document.write( "6x^2+11x-10
\n" ); document.write( "

Algebra.Com's Answer #326122 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"6x%5E2%2B11x-10\", we can see that the first coefficient is \"6\", the second coefficient is \"11\", and the last term is \"-10\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"6\" by the last term \"-10\" to get \"%286%29%28-10%29=-60\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"-60\" (the previous product) and add to the second coefficient \"11\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"-60\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"-60\":\r
\n" ); document.write( "\n" ); document.write( "1,2,3,4,5,6,10,12,15,20,30,60\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-4,-5,-6,-10,-12,-15,-20,-30,-60\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"-60\".\r
\n" ); document.write( "\n" ); document.write( "1*(-60) = -60
\n" ); document.write( "2*(-30) = -60
\n" ); document.write( "3*(-20) = -60
\n" ); document.write( "4*(-15) = -60
\n" ); document.write( "5*(-12) = -60
\n" ); document.write( "6*(-10) = -60
\n" ); document.write( "(-1)*(60) = -60
\n" ); document.write( "(-2)*(30) = -60
\n" ); document.write( "(-3)*(20) = -60
\n" ); document.write( "(-4)*(15) = -60
\n" ); document.write( "(-5)*(12) = -60
\n" ); document.write( "(-6)*(10) = -60\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"11\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1-601+(-60)=-59
2-302+(-30)=-28
3-203+(-20)=-17
4-154+(-15)=-11
5-125+(-12)=-7
6-106+(-10)=-4
-160-1+60=59
-230-2+30=28
-320-3+20=17
-415-4+15=11
-512-5+12=7
-610-6+10=4
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"-4\" and \"15\" add to \"11\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"-4\" and \"15\" both multiply to \"-60\" and add to \"11\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"11x\" with \"-4x%2B15x\". Remember, \"-4\" and \"15\" add to \"11\". So this shows us that \"-4x%2B15x=11x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"6x%5E2%2Bhighlight%28-4x%2B15x%29-10\" Replace the second term \"11x\" with \"-4x%2B15x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%286x%5E2-4x%29%2B%2815x-10%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2x%283x-2%29%2B%2815x-10%29\" Factor out the GCF \"2x\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2x%283x-2%29%2B5%283x-2%29\" Factor out \"5\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%282x%2B5%29%283x-2%29\" Combine like terms. Or factor out the common term \"3x-2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"6x%5E2%2B11x-10\" factors to \"%282x%2B5%29%283x-2%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"6x%5E2%2B11x-10=%282x%2B5%29%283x-2%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"%282x%2B5%29%283x-2%29\" to get \"6x%5E2%2B11x-10\" or by graphing the original expression and the answer (the two graphs should be identical).
\n" ); document.write( "
\n" ); document.write( "
\n" );