document.write( "Question 473453: Factor 2x^2 + 11x + 12 \n" ); document.write( "
Algebra.Com's Answer #324670 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"2x%5E2%2B11x%2B12\", we can see that the first coefficient is \"2\", the second coefficient is \"11\", and the last term is \"12\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"2\" by the last term \"12\" to get \"%282%29%2812%29=24\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"24\" (the previous product) and add to the second coefficient \"11\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"24\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"24\":\r
\n" ); document.write( "\n" ); document.write( "1,2,3,4,6,8,12,24\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-4,-6,-8,-12,-24\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"24\".\r
\n" ); document.write( "\n" ); document.write( "1*24 = 24
\n" ); document.write( "2*12 = 24
\n" ); document.write( "3*8 = 24
\n" ); document.write( "4*6 = 24
\n" ); document.write( "(-1)*(-24) = 24
\n" ); document.write( "(-2)*(-12) = 24
\n" ); document.write( "(-3)*(-8) = 24
\n" ); document.write( "(-4)*(-6) = 24\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"11\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1241+24=25
2122+12=14
383+8=11
464+6=10
-1-24-1+(-24)=-25
-2-12-2+(-12)=-14
-3-8-3+(-8)=-11
-4-6-4+(-6)=-10
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"3\" and \"8\" add to \"11\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"3\" and \"8\" both multiply to \"24\" and add to \"11\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"11x\" with \"3x%2B8x\". Remember, \"3\" and \"8\" add to \"11\". So this shows us that \"3x%2B8x=11x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2x%5E2%2Bhighlight%283x%2B8x%29%2B12\" Replace the second term \"11x\" with \"3x%2B8x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%282x%5E2%2B3x%29%2B%288x%2B12%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%282x%2B3%29%2B%288x%2B12%29\" Factor out the GCF \"x\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%282x%2B3%29%2B4%282x%2B3%29\" Factor out \"4\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28x%2B4%29%282x%2B3%29\" Combine like terms. Or factor out the common term \"2x%2B3\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"2x%5E2%2B11x%2B12\" factors to \"%28x%2B4%29%282x%2B3%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"2x%5E2%2B11x%2B12=%28x%2B4%29%282x%2B3%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"%28x%2B4%29%282x%2B3%29\" to get \"2x%5E2%2B11x%2B12\" or by graphing the original expression and the answer (the two graphs should be identical).
\n" ); document.write( "
\n" ); document.write( "
\n" );