document.write( "Question 473223: Factor the trinomial\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "6r^2 +29r -42
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #324512 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
Looking at the expression \"6r%5E2%2B29r-42\", we can see that the first coefficient is \"6\", the second coefficient is \"29\", and the last term is \"-42\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"6\" by the last term \"-42\" to get \"%286%29%28-42%29=-252\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"-252\" (the previous product) and add to the second coefficient \"29\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"-252\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"-252\":\r
\n" ); document.write( "\n" ); document.write( "1,2,3,4,6,7,9,12,14,18,21,28,36,42,63,84,126,252\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-4,-6,-7,-9,-12,-14,-18,-21,-28,-36,-42,-63,-84,-126,-252\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"-252\".\r
\n" ); document.write( "\n" ); document.write( "1*(-252) = -252
\n" ); document.write( "2*(-126) = -252
\n" ); document.write( "3*(-84) = -252
\n" ); document.write( "4*(-63) = -252
\n" ); document.write( "6*(-42) = -252
\n" ); document.write( "7*(-36) = -252
\n" ); document.write( "9*(-28) = -252
\n" ); document.write( "12*(-21) = -252
\n" ); document.write( "14*(-18) = -252
\n" ); document.write( "(-1)*(252) = -252
\n" ); document.write( "(-2)*(126) = -252
\n" ); document.write( "(-3)*(84) = -252
\n" ); document.write( "(-4)*(63) = -252
\n" ); document.write( "(-6)*(42) = -252
\n" ); document.write( "(-7)*(36) = -252
\n" ); document.write( "(-9)*(28) = -252
\n" ); document.write( "(-12)*(21) = -252
\n" ); document.write( "(-14)*(18) = -252\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"29\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1-2521+(-252)=-251
2-1262+(-126)=-124
3-843+(-84)=-81
4-634+(-63)=-59
6-426+(-42)=-36
7-367+(-36)=-29
9-289+(-28)=-19
12-2112+(-21)=-9
14-1814+(-18)=-4
-1252-1+252=251
-2126-2+126=124
-384-3+84=81
-463-4+63=59
-642-6+42=36
-736-7+36=29
-928-9+28=19
-1221-12+21=9
-1418-14+18=4
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"-7\" and \"36\" add to \"29\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"-7\" and \"36\" both multiply to \"-252\" and add to \"29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"29r\" with \"-7r%2B36r\". Remember, \"-7\" and \"36\" add to \"29\". So this shows us that \"-7r%2B36r=29r\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"6r%5E2%2Bhighlight%28-7r%2B36r%29-42\" Replace the second term \"29r\" with \"-7r%2B36r\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%286r%5E2-7r%29%2B%2836r-42%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"r%286r-7%29%2B%2836r-42%29\" Factor out the GCF \"r\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"r%286r-7%29%2B6%286r-7%29\" Factor out \"6\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28r%2B6%29%286r-7%29\" Combine like terms. Or factor out the common term \"6r-7\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"6r%5E2%2B29r-42\" factors to \"%28r%2B6%29%286r-7%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"6r%5E2%2B29r-42=%28r%2B6%29%286r-7%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"%28r%2B6%29%286r-7%29\" to get \"6r%5E2%2B29r-42\" or by graphing the original expression and the answer (the two graphs should be identical).
\n" ); document.write( "
\n" ); document.write( "
\n" );