document.write( "Question 470818: Find the standard form of the equation of the hyperbola with the given characteristics.\r
\n" );
document.write( "\n" );
document.write( "asymptotes:y=+-4x\r
\n" );
document.write( "\n" );
document.write( "a.(y^2)/(16/17)-(x^2)/(256/17)=1
\n" );
document.write( "b.(x^2)/(16/17)-(y^2)/(256/17)=1
\n" );
document.write( "c.(y^2)/(16)-(x^2)/(16)=1
\n" );
document.write( "d.(x^2)/(16)-(y^2)/(16)=1
\n" );
document.write( "e.(x^2)/(256/17)-(y^2)/(16/17)=1 \n" );
document.write( "
Algebra.Com's Answer #323087 by lwsshak3(11628)![]() ![]() ![]() You can put this solution on YOUR website! Find the standard form of the equation of the hyperbola with the given characteristics. \n" ); document.write( "asymptotes:y=+-4x \n" ); document.write( "a.(y^2)/(16/17)-(x^2)/(256/17)=1 \n" ); document.write( "b.(x^2)/(16/17)-(y^2)/(256/17)=1 \n" ); document.write( "c.(y^2)/(16)-(x^2)/(16)=1 \n" ); document.write( "d.(x^2)/(16)-(y^2)/(16)=1 \n" ); document.write( "e.(x^2)/(256/17)-(y^2)/(16/17)=1 \n" ); document.write( "** \n" ); document.write( "Standard form for hyperbola: (x-h)^2/a^2-(y-k)^2/b^2=1 \n" ); document.write( "b.(x^2)/(16/17)-(y^2)/(256/17)=1 \n" ); document.write( "This is a hyperbola with horizontal transverse axis. (opens sideways) \n" ); document.write( "Center: (0,0) \n" ); document.write( "a^2=16/17 \n" ); document.write( "a=4/√17 \n" ); document.write( "b^2=256/17 \n" ); document.write( "b=16/√17 \n" ); document.write( "Slope=b/a=(16/√17)/(4√17)=4 (matches given slope=±4) \n" ); document.write( "asymptotes: \n" ); document.write( "y=±4x \n" ); document.write( "ans:Equation b. is the correct choice \n" ); document.write( "see graph below as a visual check on the answer.\r \n" ); document.write( "\n" ); document.write( ".. \n" ); document.write( "y=±((17x^2/16-1)(256/17))^.5 \n" ); document.write( " |