document.write( "Question 470818: Find the standard form of the equation of the hyperbola with the given characteristics.\r
\n" ); document.write( "\n" ); document.write( "asymptotes:y=+-4x\r
\n" ); document.write( "\n" ); document.write( "a.(y^2)/(16/17)-(x^2)/(256/17)=1
\n" ); document.write( "b.(x^2)/(16/17)-(y^2)/(256/17)=1
\n" ); document.write( "c.(y^2)/(16)-(x^2)/(16)=1
\n" ); document.write( "d.(x^2)/(16)-(y^2)/(16)=1
\n" ); document.write( "e.(x^2)/(256/17)-(y^2)/(16/17)=1
\n" ); document.write( "

Algebra.Com's Answer #323087 by lwsshak3(11628)\"\" \"About 
You can put this solution on YOUR website!
Find the standard form of the equation of the hyperbola with the given characteristics.
\n" ); document.write( "asymptotes:y=+-4x
\n" ); document.write( "a.(y^2)/(16/17)-(x^2)/(256/17)=1
\n" ); document.write( "b.(x^2)/(16/17)-(y^2)/(256/17)=1
\n" ); document.write( "c.(y^2)/(16)-(x^2)/(16)=1
\n" ); document.write( "d.(x^2)/(16)-(y^2)/(16)=1
\n" ); document.write( "e.(x^2)/(256/17)-(y^2)/(16/17)=1
\n" ); document.write( "**
\n" ); document.write( "Standard form for hyperbola: (x-h)^2/a^2-(y-k)^2/b^2=1
\n" ); document.write( "b.(x^2)/(16/17)-(y^2)/(256/17)=1
\n" ); document.write( "This is a hyperbola with horizontal transverse axis. (opens sideways)
\n" ); document.write( "Center: (0,0)
\n" ); document.write( "a^2=16/17
\n" ); document.write( "a=4/√17
\n" ); document.write( "b^2=256/17
\n" ); document.write( "b=16/√17
\n" ); document.write( "Slope=b/a=(16/√17)/(4√17)=4 (matches given slope=±4)
\n" ); document.write( "asymptotes:
\n" ); document.write( "y=±4x
\n" ); document.write( "ans:Equation b. is the correct choice
\n" ); document.write( "see graph below as a visual check on the answer.\r
\n" ); document.write( "\n" ); document.write( "..
\n" ); document.write( "y=±((17x^2/16-1)(256/17))^.5
\n" ); document.write( "
\n" ); document.write( "
\n" );