document.write( "Question 48581: use the discriminant to determine the number of solutions of the quadratic equation, and whether the solutions are real or complex. Note: It is not necessary to find the roots; just determine the number and types of solutions.\r
\n" );
document.write( "\n" );
document.write( " 2x^2 + x - 1 = 0\r
\n" );
document.write( "\n" );
document.write( " 4/3x^2 - 2x + 3/4 = 0\r
\n" );
document.write( "\n" );
document.write( " 2x^2 + 5x + 5 = 0\r
\n" );
document.write( "\n" );
document.write( " 3z^2 + z - 1 = 0\r
\n" );
document.write( "\n" );
document.write( " m^2 + m + 1 = 0
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #32166 by AnlytcPhil(1806)![]() ![]() You can put this solution on YOUR website! use the discriminant to determine the number of solutions\r\n" ); document.write( "of the quadratic equation, and whether the solutions are \r\n" ); document.write( "real or complex. Note: It is not necessary to find the \r\n" ); document.write( "roots; just determine the number and types of solutions. \r\n" ); document.write( "\r\n" ); document.write( "----------------------------------\r\n" ); document.write( "\r\n" ); document.write( "Just learn these rules:\r\n" ); document.write( "\r\n" ); document.write( "Ax² + Bx + C =0 (or any letter besides x)\r\n" ); document.write( "\r\n" ); document.write( "has the discriminant B² - 4AC. Calculate it.\r\n" ); document.write( "\r\n" ); document.write( "1. If the discriminant is 0, there is one real solution.\r\n" ); document.write( "\r\n" ); document.write( "2. If the discriminant is negative, there are two conjugate\r\n" ); document.write( " complex solutions.\r\n" ); document.write( "\r\n" ); document.write( "3. If the discriminant is positive, there are two real \r\n" ); document.write( " solutions. \r\n" ); document.write( " A. If the discriminant is a perfect square, the two real \r\n" ); document.write( " solutions are rational.\r\n" ); document.write( " B. If the discriminant is not a perfect square, the two \r\n" ); document.write( " real solutions are irrational.\r\n" ); document.write( "\r\n" ); document.write( "----------------\r\n" ); document.write( "\r\n" ); document.write( "2x² + x - 1 = 0\r\n" ); document.write( "\r\n" ); document.write( "Give the x a coefficient of 1:\r\n" ); document.write( "\r\n" ); document.write( "2x² + 1x - 1 = 0\r\n" ); document.write( "\r\n" ); document.write( "Compare that to\r\n" ); document.write( "\r\n" ); document.write( "Ax² + Bx + C = 0\r\n" ); document.write( "\r\n" ); document.write( "A = 2, B = 1, and C = -1\r\n" ); document.write( "\r\n" ); document.write( "Calculate discriminant B² - 4AC\r\n" ); document.write( " (1)² - 4(2)(-1)\r\n" ); document.write( " 1 + 8\r\n" ); document.write( " 9\r\n" ); document.write( "\r\n" ); document.write( "9 is positive, so there by rule 3 above there are two real\r\n" ); document.write( "solutions. 9 is also a perfect square, so by rule 3A the \r\n" ); document.write( "two real solutions are rational. \r\n" ); document.write( "\r\n" ); document.write( "------------------\r\n" ); document.write( "\r\n" ); document.write( "4/3x² - 2x + 3/4 = 0 \r\n" ); document.write( "\r\n" ); document.write( "Compare that to\r\n" ); document.write( "\r\n" ); document.write( "Ax² + Bx + C = 0\r\n" ); document.write( "\r\n" ); document.write( "A = 4/3, B = -2, and C = 3/4\r\n" ); document.write( "\r\n" ); document.write( "Calculate discriminant B² - 4AC\r\n" ); document.write( " (-2)² - 4(4/3)(3/4)\r\n" ); document.write( " -4\r\n" ); document.write( " \r\n" ); document.write( "\r\n" ); document.write( "-4 is negative, so there by rule 2 above there are \r\n" ); document.write( "two conjugate complex solutions.\r\n" ); document.write( "\r\n" ); document.write( "-----------------------\r\n" ); document.write( "\r\n" ); document.write( "2x² + 5x + 5 = 0 \r\n" ); document.write( "\r\n" ); document.write( "Compare that to\r\n" ); document.write( "\r\n" ); document.write( "Ax² + Bx + C = 0\r\n" ); document.write( "\r\n" ); document.write( "A = 2, B = 5, and C = 5\r\n" ); document.write( "\r\n" ); document.write( "Calculate discriminant B² - 4AC\r\n" ); document.write( " (5)² - 4(2)(5)\r\n" ); document.write( " 25 - 40\r\n" ); document.write( " -13\r\n" ); document.write( "\r\n" ); document.write( "-13 is negative, so there by rule 2 above there are \r\n" ); document.write( "two conjugate complex solutions.\r\n" ); document.write( "\r\n" ); document.write( "------------------------\r\n" ); document.write( "\r\n" ); document.write( "3z² + z - 1 = 0\r\n" ); document.write( "\r\n" ); document.write( "Give the z a coefficient of 1\r\n" ); document.write( "\r\n" ); document.write( "3z² + 1z - 1 = 0\r\n" ); document.write( "\r\n" ); document.write( "Compare that to\r\n" ); document.write( "\r\n" ); document.write( "Ax² + Bx + C = 0\r\n" ); document.write( "\r\n" ); document.write( "A = 3, B = 1, and C = -1\r\n" ); document.write( "\r\n" ); document.write( "Calculate discriminant B² - 4AC\r\n" ); document.write( " (1)² - 4(3)(-1)\r\n" ); document.write( " 1 + 12\r\n" ); document.write( " 13\r\n" ); document.write( "\r\n" ); document.write( "13 is positive, so there by rule 3 above there are two real\r\n" ); document.write( "solutions. 13 is not a perfect square, so by rule 3B the \r\n" ); document.write( "two real solutions are irrational. \r\n" ); document.write( "\r\n" ); document.write( "-----------------------------------\r\n" ); document.write( "\r\n" ); document.write( "m² + m + 1 = 0\r\n" ); document.write( "\r\n" ); document.write( "Give the m² and the m coeficients of 1 each\r\n" ); document.write( "\r\n" ); document.write( "1m² + 1m + 1 = 0\r\n" ); document.write( "\r\n" ); document.write( "Compare that to\r\n" ); document.write( "\r\n" ); document.write( "Ax² + Bx + C = 0\r\n" ); document.write( "\r\n" ); document.write( "A = 1, B = 1, and C = 1\r\n" ); document.write( "\r\n" ); document.write( "Calculate discriminant B² - 4AC\r\n" ); document.write( " (1)² - 4(1)(1)\r\n" ); document.write( " 1 - 4\r\n" ); document.write( " -3\r\n" ); document.write( "\r\n" ); document.write( "-3 is negative, so there by rule 2 above there are \r\n" ); document.write( "two conjugate complex solutions.\r\n" ); document.write( "\r\n" ); document.write( "Edwin\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |