document.write( "Question 459114: how do I graph 25(x+4)^2 + (y-3)^2 =25 \n" ); document.write( "
Algebra.Com's Answer #316899 by lwsshak3(11628) ![]() You can put this solution on YOUR website! how do I graph 25(x+4)^2 + (y-3)^2 =25 \n" ); document.write( ".. \n" ); document.write( "25(x+4)^2 + (y-3)^2 =25 \n" ); document.write( "divide by 25 \n" ); document.write( "(x+4)^2 + (y-3)^2/25 =1 \n" ); document.write( "This equation is an ellipse with a vertical major axis. (second form listed below) \n" ); document.write( ".. \n" ); document.write( "Standard form of ellipse with horizontal major axis: (x-h)^2/a^2+(y-k)^2/b^2=1, (a>b), with (h,k) being the (x,y) coordinates of the center. \n" ); document.write( "Standard form of ellipse with vertical major axis: (x-h)^2/b^2+(y-k)^2/a^2=1, (a>b), with (h,k) being the (x,y) coordinates of the center. \n" ); document.write( "The difference between the two forms is the interchange of a^2 and b^2. \n" ); document.write( ".. \n" ); document.write( "for given problem: \n" ); document.write( "center: (-4,3) \n" ); document.write( "a^2=25 \n" ); document.write( "a=5 \n" ); document.write( "length of major axis=2a=10 \n" ); document.write( "vertices: (-4,3±a)=(-4,3±5) \n" ); document.write( ".. \n" ); document.write( "b^2=1 \n" ); document.write( "b=1 \n" ); document.write( "length of minor axis=2b=2 \n" ); document.write( ".. \n" ); document.write( "See graph below as a visual check on the answers. \n" ); document.write( ".. \n" ); document.write( "y=(25-25(x+4)^2)^.5+3\r \n" ); document.write( "\n" ); document.write( " |