document.write( "Question 461591: Find the center, vertices and foci of the ellipse 32x^2+4y^2+192x-24y=-196 \n" ); document.write( "
Algebra.Com's Answer #316527 by lwsshak3(11628)![]() ![]() ![]() You can put this solution on YOUR website! Find the center, vertices and foci of the ellipse 32x^2+4y^2+192x-24y=-196 \n" ); document.write( ".. \n" ); document.write( "Standard form of ellipse with horizontal major axis: (x-h)^2/a^2+(y-k)^2/b^2=1, (a>b), with (h,k) being the (x,y) coordinates of the center. \n" ); document.write( "Standard form of ellipse with vertical major axis: (x-h)^2/b^2+(y-k)^2/a^2=1, (a>b), with (h,k) being the (x,y) coordinates of the center. \n" ); document.write( "The difference between the two forms is the interchange of a^2 and b^2. \n" ); document.write( ".. \n" ); document.write( "32x^2+4y^2+192x-24y=-196 \n" ); document.write( "completing the square \n" ); document.write( "32(x^2+6x+9)+4(y^2-6y+9)=-196+288+36=128 \n" ); document.write( "32(x+3)^2+4(y-3)^2=128 \n" ); document.write( "divide by 128 \n" ); document.write( "(x+3)^2/4+(y-3)^2/32=1 \n" ); document.write( "Because the y-term has the larger denominator, this ellipse has a vertical major axis, second form listed above. \n" ); document.write( "center: (-3,3) \n" ); document.write( ".. \n" ); document.write( "a^2=32 \n" ); document.write( "a=√32=5.66 \n" ); document.write( "length of major axis=2a=2√32 \n" ); document.write( "vertices: (3,3±a)=(3,3±√32) \n" ); document.write( ".. \n" ); document.write( "b^2=4 \n" ); document.write( "b=2 \n" ); document.write( "length of minor axis=2b=4 \n" ); document.write( ".. \n" ); document.write( "c^2=a^2-b^2=32-4=28 \n" ); document.write( "c=√28=5.29.. \n" ); document.write( "Foci:(3,3±c)=(3,3±√28) \n" ); document.write( "See the graph below as a visual check on the answers \n" ); document.write( "..\r \n" ); document.write( "\n" ); document.write( "y= (32-8(x+3)^2)^.5+3 \r \n" ); document.write( "\n" ); document.write( " |