document.write( "Question 459116: how do I graph 25(x+2)^2-9(y-1)^2=225 \n" ); document.write( "
Algebra.Com's Answer #316258 by lwsshak3(11628)![]() ![]() ![]() You can put this solution on YOUR website! how do I graph 25(x+2)^2-9(y-1)^2=225 \n" ); document.write( ".. \n" ); document.write( "25(x+2)^2-9(y-1)^2=225 \n" ); document.write( "divide by 225 \n" ); document.write( "(x+2)^2/9-(y-1)^2/25=1 \n" ); document.write( "This equation is a hyperbola with horizontal transverse axis. (Note the minus sign and the x-term comes before the y-term) \n" ); document.write( ".. \n" ); document.write( "Standard form of a hyperbola with horizontal transverse axis: (x-h)^2/a^2-(y-k)^2/b^2=1, with (h,k) being the (x,y) coordinates of the center. \n" ); document.write( "Standard form of a hyperbola with vertical transverse axis: (y-k)^2/a^2-(x-h)^2/b^2=1, with (h,k) being the (x,y) coordinates of the center. \n" ); document.write( "The difference between the two forms is the interchange of (x-h) and (y-k) \n" ); document.write( ".. \n" ); document.write( "center(-2,1) \n" ); document.write( ".. \n" ); document.write( "a^2=9 \n" ); document.write( "a=3 \n" ); document.write( "length of transverse axis=2a=6 \n" ); document.write( "vertices=(-2±3,1)=(-5,1) and (1,1) \n" ); document.write( ".. \n" ); document.write( "b^2=25 \n" ); document.write( "b=5 \n" ); document.write( "length of conjugate axis=2b=10 \n" ); document.write( ".. \n" ); document.write( "Asymptotes: \n" ); document.write( "slope, m=±b/a=±5/3 \n" ); document.write( "Equations: \n" ); document.write( "y=mx+b \n" ); document.write( "1=5(-2)/3+b \n" ); document.write( "b=1+10/3=13/3 \n" ); document.write( "y=5x/3+13/3 \n" ); document.write( ".. \n" ); document.write( "1=-5(-2)/3+b \n" ); document.write( "b=1-10/3=-7/3 \n" ); document.write( "y=-5x/3-7/3 \n" ); document.write( ".. \n" ); document.write( "y=(-25+25(x+2)^2/9)^.5+1 \n" ); document.write( "See graph below as a visual check on answers above:\r \n" ); document.write( "\n" ); document.write( " |