document.write( "Question 458026: When ax^3-2x^2+3x-5 is divided by 2x-1, the remainder is -8
\n" );
document.write( "Find a. \n" );
document.write( "
Algebra.Com's Answer #314444 by Edwin McCravy(20060)![]() ![]() You can put this solution on YOUR website! When ax^3-2x^2+3x-5 is divided by 2x-1, the remainder is -8 \n" ); document.write( " \r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " _________________________\r\n" ); document.write( "2x - 1)ax³ - 2x² - 2x² + 3x - 5\r\n" ); document.write( "\r\n" ); document.write( "We won't divide that out, but suppose we did.\r\n" ); document.write( "We would get some quotient Q(x) and a remainder of -8\r\n" ); document.write( "\r\n" ); document.write( " Q(x) \r\n" ); document.write( "2x - 1)ax³ - 2x² - 2x² + 3x - 5\r\n" ); document.write( " ..... \r\n" ); document.write( " ......\r\n" ); document.write( " _______\r\n" ); document.write( " -8\r\n" ); document.write( "\r\n" ); document.write( "Then use \r\n" ); document.write( "\r\n" ); document.write( " DIVIDEND = QUOTIENT*DIVISOR + REMAINDER\r\n" ); document.write( "\r\n" ); document.write( " ax³ - 2x² + 3x - 5 = Q(x)*(2x - 1) + (-8)\r\n" ); document.write( "\r\n" ); document.write( "We want to make the factor (2x - 1) equal to zero so that\r\n" ); document.write( "term will be eliminated. \r\n" ); document.write( "\r\n" ); document.write( "2x - 1 = 0\r\n" ); document.write( " 2x = 1\r\n" ); document.write( " x = ½\r\n" ); document.write( " \r\n" ); document.write( "Now substitute x = ½ in\r\n" ); document.write( "\r\n" ); document.write( " ax³ - 2x² + 3x - 5 = Q(x)*(2x - 1) + (-8)\r\n" ); document.write( "\r\n" ); document.write( " a(½)³ - 2(½)² + 3(½) - 5 = Q(½)*(2*½ - 1) + (-8)\r\n" ); document.write( "\r\n" ); document.write( " a(⅛) - 2(¼) + \n" ); document.write( " \n" ); document.write( " |