document.write( "Question 455974: I have to find the center, vertices, co-vertices, foci, and asymptotes for the hyperbola . Can someone help me please? \n" );
document.write( "
Algebra.Com's Answer #313042 by Edwin McCravy(20056)![]() ![]() You can put this solution on YOUR website! \r\n" ); document.write( "4x² - 8x - y² + 4y - 4 = 0\r\n" ); document.write( "\r\n" ); document.write( "Factor the coefficient of x², which is 4, out of \r\n" ); document.write( "the two x-terms \r\n" ); document.write( "\r\n" ); document.write( "4(x² - 2x) - y² + 4y - 4 = 0\r\n" ); document.write( "\r\n" ); document.write( "Factor the coefficient of y², which is -1, out of \r\n" ); document.write( "the two y-terms\r\n" ); document.write( "\r\n" ); document.write( "4(x² - 2x) - (y² - 4y) - 4 = 0\r\n" ); document.write( "\r\n" ); document.write( "Get the term -4 off the left side by adding\r\n" ); document.write( "4 to both sides:\r\n" ); document.write( " \r\n" ); document.write( " 4(x² - 2x) - (y² - 4y) = 4\r\n" ); document.write( "\r\n" ); document.write( "Multiply the coefficient of x inside the parentheses,\r\n" ); document.write( "which is -2 by ½ getting -1. Then square -1 getting +1.\r\n" ); document.write( "Add +1 inside the first parentheses, and offset it by\r\n" ); document.write( "adding +4 to the right side, since adding +1 inside\r\n" ); document.write( "the first parentheses amounts to adding +4 to the left side\r\n" ); document.write( "because of the 4 outside the first parentheses:\r\n" ); document.write( "\r\n" ); document.write( "4(x² - 2x + 1) - (y² - 4y) = 4 + 4\r\n" ); document.write( "\r\n" ); document.write( "Combine the 4 + 4 on the right as 8\r\n" ); document.write( "\r\n" ); document.write( "4(x² - 2x + 1) - (y² - 4y) = 8\r\n" ); document.write( "\r\n" ); document.write( "Multiply the coefficient of y inside the second parentheses,\r\n" ); document.write( "which is -4 by ½ getting -2. Then square -2 getting +4.\r\n" ); document.write( "Add +4 inside the second parentheses, and offset it by\r\n" ); document.write( "adding -4 to the right side, since adding +4 inside\r\n" ); document.write( "the second parentheses amounts to adding -4 to the left side\r\n" ); document.write( "because of the - outside the second parentheses:\r\n" ); document.write( "\r\n" ); document.write( "4(x² - 2x + 1) - (y² - 4y + 4) = 8 - 4\r\n" ); document.write( "\r\n" ); document.write( "Combine the 8 - 4 on the right as 4\r\n" ); document.write( "\r\n" ); document.write( "4(x² - 2x + 1) - (y² - 4y + 4) = 4\r\n" ); document.write( "\r\n" ); document.write( "Factor x² - 2x + 1 as (x - 1)(x - 1) and then as (x - 1)²\r\n" ); document.write( "Factor y² - 4y + 4 as (y - 2)(y - 2) and then as (y - 2)²\r\n" ); document.write( "\r\n" ); document.write( " 4(x - 1)² - (y - 2)² = 4\r\n" ); document.write( "\r\n" ); document.write( "Next we must get a 1 on the right.\r\n" ); document.write( "So we divide all the terms by 4\r\n" ); document.write( "\r\n" ); document.write( " 4(x - 1)² (y - 2)² 4\r\n" ); document.write( " ————————— - ———————— = ——— \r\n" ); document.write( " 4 4 4\r\n" ); document.write( "\r\n" ); document.write( " (x - 1)² (y - 2)² \r\n" ); document.write( " ————————— - ———————— = 1 \r\n" ); document.write( " 1 4 \r\n" ); document.write( "\r\n" ); document.write( "Next we compare that to\r\n" ); document.write( "\r\n" ); document.write( " (x - h)² (y - k)² \r\n" ); document.write( " ————————— - ———————— = 1 \r\n" ); document.write( " a² b²\r\n" ); document.write( "\r\n" ); document.write( "which means that it is a hyperbolka that looks like this )(\r\n" ); document.write( "\r\n" ); document.write( "We see that h = 1, k = 2, a² = 1 so a = 1 and b² = 4 so b = 2\r\n" ); document.write( "\r\n" ); document.write( "The center = (h,k) = (1,2)\r\n" ); document.write( "\r\n" ); document.write( "Plot the center (1,2)\r\n" ); document.write( "\r\n" ); document.write( "\n" ); document.write( " |